GSSM
 RESIDENTIAL

Academic Policies and Course Catalog 2024-2025
Table of Contents
Introduction 4
Section 1: GSSM Course Descriptions 6
American Sign Language 6
Biology 6
Chemistry 10
Chinese 12
Computer Science 13
Engineering 16
English 19
French 23
General Science 25
German 26
Government, Economics, And Finance 26
History 28
Mathematics 30
Music 33
Physics 35
Psychology 37
Research \& Inquiry 37
Spanish 39
Visual Arts 41
Junior Seminar Series 43
Senior Seminar Series 44
Section 2: Frequently Asked Questions 45
Section 3: Academic Policies 53
Academic Requirements and Eligibility 53
A. Academic Calendar 53
B. Academic Requirements 53
B. Academic Eligibility to Continue at GSSM 55
C. Research \& Inquiry Program 56
D. Community Engagement 56
E. January Interim 56
Academic Integrity and Grading 57
F. Academic Integrity 57
G. Grade Appeal Policy 63
H. Grade Point Average Equivalencies 65
I. Class Rank 66
Academic Advising and Planning 66
J. Academic Advisors 66
K. College Credit Hours for GSSM Courses 67
L. Independent Studies 70
Course and Assembly Policies 71
M. Attendance, Absences, and Makeup Policy 71
N. General Course Policies 75
O. Meetings and Assemblies 77
Disclaimers:
The language used in this document does not constitute an offer of employment, or admission to any program. It does not create a contract between the reader, holder, or recipient, and GSSM. This document does not create any contractual rights or entitlements. GSSM reserves the right to revise the content of this document, in whole or in part. No promises or assurances, whether written or oral, which are contrary to or inconsistent with the terms of this paragraph create any contract of employment or admission. Nothing in this guide is intended to supersede any state or federal law.
This guide may not contain all of the policies, procedures, or instructions that apply to GSSM students. In the event that a policy or procedure described herein, or its absence, improperly contradicts other policies, procedures, or statutes of the State of South Carolina, authoritative policy may take precedence without invalidating other parts of this guide. Policies that apply to students in the State of South Carolina, but may not be contained within this document, may apply to GSSM students. All policies, procedures, and statements contained herein supersede policies, procedures, statements, and practices previously published or communicated by GSSM.

Introduction

The GSSM Catalog with Academic Policies is a resource for students, faculty, and staff to find information about how academics work at GSSM.

It begins with a full course description for all GSSM courses by department. Use these course descriptions to understand what the range of options is for the courses you can take at GSSM. The descriptions list the prerequisites for each course. All GSSM courses are listed in this catalog, with the semester they are typically taught. For a list of courses taught each specific semester, refer to the GSSM Course Schedule published separately. Use these documents to help plan your schedule as you work with your academic advisor.

Next in the catalog comes a list of frequently asked questions about academics at GSSM. This FAQ is a great resource for understanding our curriculum and planning your courses.

Finally, we have all GSSM's academic policies and procedures, the information you need to succeed at GSSM and the academic rules you must follow. This section starts with the academic requirements you need to graduate and explains everything from the role of your academic advisor to how Research \& Inquiry works.

The FAQ and academic policies and procedures are also included in The GSSM Student Handbook.

Students are responsible for understanding and following these policies. The catalog isn't just a rulebook, though. Students, working with faculty, staff, and their families, should use it to understand all GSSM has to offer academically. Our commitment is both to academic excellence and to helping every GSSM student get the most out of their GSSM education.

As you read through the course offerings be sure to consider the following elements:
1] Number of semesters. Some courses, like CSC 230-H Data Structures and Algorithms, are one-semester courses. Others, like SPA 201-H Spanish II, are year-long courses. Yet other courses, like CHE 201 and 202 AP Chemistry, are two-semester course sequences. 2] Level of the course. Some courses, like BIO 201 Principles of Biology I, are AP courses. These are clearly marked with the letters "AP" after the course numbers. Other courses, like SPA 703 Topics in Hispanic Culture and Linguistics, are listed as "Above AP". Above

AP means that the course requires an AP course as a prerequisite or there is no AP course sanctioned by the College Board in that area. Some courses, like ECON 210 Principles of Economics. Macroeconomics, are listed as "Dual Credit". Any course not designated as AP, Above AP, or Dual Credit, is at the honors level. An example of an honors level course is MUS110 Chamber Orchestra 1.

3] Course format (in-person/virtual]. Most courses are offered live in-person. However, some courses are offered in other formats. Any course offered in a different format will be designated appropriately. For example. ECON 210 Macroeconomics is listed as a virtual course.

Section 1: GSSM Course Descriptions

American Sign Language

ASL101-H	Introduction to American Sign Language I (A Full Year - 1.0 unit) This course is taught online with synchronous instruction. ASL I is an introductory language course intended for students with little or no knowledge of American Sign Language. American Sign Language (ASL) is the language used by the Deaf Community in the United States and parts of Canada. This course uses a communicative methodology in an effort to promote the five 'Cs' of second language acquisition: Communication, Cultures, Connections, Comparisons and Communities. By the end of the academic year, students should have a greater understanding of cultural and historical topics associated with Deaf Culture and American Sign Language. Students should expect to discuss basic topics and cultural events in the present, past, and future; describe people and places; and talk about daily activities. The course includes projects and presentations on Deaf Culture in America; role play, interactions with the Deaf Community and field trips to the South Carolina School for the Deaf and Blind.
ASL201-H	Introduction to American Sign Language II (A Full Year - 1.0 unit) This course is taught online with synchronous instruction. ASL II is an interactive, proficiency-oriented and student-centered course that builds on the language proficiency and cultural knowledge/awareness acquired in American Sign Language I. This course uses a communicative methodology in an effort to promote the five 'Cs' of second language acquisition: Communication, Cultures, Connections, Comparisons and Communities. By the end of the academic year, students should have a greater understanding of cultural and historical topics associated with Deaf Culture and American Sign Language. Students should expect to discuss topics and cultural events in the present, past, and future; describe people and places; and talk about daily activities. The course includes projects and presentations on Deaf Culture in America; role play, interactions with the deaf community and field trips to the South Carolina School for the Deaf and Blind. PREREQ: ASL / or permission of instructor.

Biology

BIO201-AP (AP Bio)	Principles of Biology I (AP BIO) (SPRING Semester - 0.5 unit) This course covers selected topics that are fundamental to an understanding of biology. Important concepts that may have been introduced in other courses will be covered in depth and expanded with laboratory experiences and discussions of relevant research. Units covered in this course will include discussions of inheritance, evolution and mechanisms of selection, speciation, origin of life, diversity of life, animal behavior, ecology, and energy production in plants and animals. Includes a 2-3-hour weekly lab.

BIO202-AP (AP Bio)	Principles of Biology II (AP BIO) (FALL Semester - 0.5 unit) This course will examine selected topics that are fundamental to an understanding of biology. Important concepts that may have been introduced in an introductory course will be covered in depth and expanded upon with laboratory and discussions of current research findings in these areas. Units covered in this semester will include discussions of basic biochemistry, cell structure and function, mitosis, meiosis, DNA replication, transcription, translation, regulation of gene expression, and current molecular biology techniques. Includes a 2-3-hour weekly lab.
BIO302 above AP or DC	Marine Biology (FALL Semester - 0.5 unit) About 70\% of the Earth is covered by the ocean, yet most biology courses focus on understanding terrestrial processes and concepts. This course introduces students to the basics of Marine Biology, exploring the physical structure, organisms, and ecology of the oceans. Topics to be discussed include oceanography, molecular and cellular biology, marine microbiology, marine botany, marine zoology, and marine ecology. Management and conservation of marine environments will also be addressed. Includes a 2-3-hour weekly lab. PREREQ: BIO201-AP or completion of AP Biology.
BIO303 above AP or DC	
Molecular Biology of the Cell (FALL Semester - 0.5 units) The purpose of this course is to acquaint the student with selected topics in the molecular biology of cells with a focus on eukaryotes. The course format is a combination of lectures and discussions of current research articles with student participation as an important element. Laboratory work will emphasize important concepts and techniques used in the study of cellular components and will involve extensive hands-on manipulations. In-class tests and out-of-class problem sets will require an understanding of experimental design and interpretation of data. Includes a 2-3-hour weekly lab. PREREQ: BIO201-AP and BIO2O2-AP or completion of AP Biology.	
BIO30	
above AP or DC	
above AP or DC	

$\left.\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { studied. This course will include a two-hour lab/week and a group project to isolate } \\ \text { microorganisms with unique characteristics from the natural environment. Includes a 2-hour } \\ \text { weekly lab. PREREQ: BIO202-AP with concurrent enrollment in BIO201-AP or completion of AP } \\ \text { Biology. }\end{array} \\ \hline \begin{array}{l}\text { BIO306 } \\ \text { above AP or DC }\end{array} & \begin{array}{l}\text { Introduction to Neuroscience (SPRING Semester - 0.5 unit) } \\ \text { This course serves as an introduction to the basics of nervous system functions and } \\ \text { dysfunctions. This class is open only to students with an A or high B in AP Biology. The course } \\ \text { begins with the cellular and molecular biology of neurons and glial cells, including the study } \\ \text { of neuronal cell structure, the propagation of nerve impulses and transfer of information } \\ \text { between nerve cells (action potentials and synaptic transmission). The course then follows } \\ \text { the effect of drugs on this process and the development of nerve cells into the brain and } \\ \text { spinal cord as well as how the brain receives and processes sensory information and how it } \\ \text { acts on that information through various motor and sensory systems. Other topics covered } \\ \text { included how behavior, emotion and memory emerge from brain function. Teaching methods } \\ \text { included lectures, discussions, case studies and talks by renowned neuroscientists. This } \\ \text { course will also include hands-on as well as virtual labs. Includes a 2-3-hour weekly lab. } \\ P R E R E Q: ~ B I O 201-A P ~ a n d ~ B I O 202-A P ~ o r ~ c o m p l e t i o n ~ o f ~ A P ~ B i o l o g y . ~\end{array} \\ \hline \text { BIO311C } \\ \text { above AP or DC }\end{array}\right\} \begin{array}{l}\text { Medical Mycology (FALL Semester - 0.5 unit) } \\ \text { This course will provide students with an overview of the major fungal diseases or mycoses } \\ \text { that threaten animal and human health. The causal agents, symptoms, modes of infections, } \\ \text { prognosis, and treatment of fungus-related illness will be discussed and explored in detail. In }\end{array}\right\}$

	addition to that, the laboratory component of this class will highlight the impact of environmental fungi on human well-being linked to elements such as food spoilage, molds in buildings (sick building syndrome), among others. Includes a 2-hour weekly lab. PREREQ: BIO201-AP and BIO202-AP or completion of AP Biology.
RES405 above AP or DC	Research in Restoration Ecology (SPRING Semester - 0.5 unit) In this course, we will learn the guiding theories and ethics of restoration ecology and put those principles into practice - engaging in active restoration projects in collaboration with Kalmia Gardens. Approximately one third of our instructional time will be spent in the classroom learning the discipline of restoration ecology and engaging in experimental design. The remaining two thirds will be spent in the field, conducting ecological research and directly contributing to restoration efforts. Throughout this course, students will come to intimately know the interconnectedness of organisms and environment, including human organisms. We will aim to cultivate a sense of place and purpose, practice putting this knowledge into action, and use data analysis to measure our progress. Students complete the GSSM Research \& Inquiry Portfolio. Includes a 2 - 3-hour weekly lab. Requires significant time spent outdoors in varying weather conditions and some manual labor. PREREQ: AP Environmental Science or permission of instructor. Priority enrollment will be given to seniors. Special Category: Fulfills GSSM Research \& Inquiry Requirement Special Approval: Instructor and Director of Research \& Inquiry
RES406-H	Research in Hydroponics (FALL/SPRING Semester - 0.5 unit) This project-based research course provides a foundational knowledge on controlled environment crop production practices and management which will be used to develop and execute a collaborative research project. Topics include the historical perspective, key principles and types of hydroponic systems, basic plant physiology, anatomy, nutrition and disorders. Additionally, students will be introduced to soilless growing, crop response to environment factors, and new technologies inherent to controlled environment agriculture. Students will be putting these theories into practice by conducting a student-developed research project in the hydroponic research lab located on campus. Class time will be divided between classroom activities - lecture, discussion, student-inspired learning and guest speakers - and work in the GSSM Hydroponic Research Lab, understanding, maintaining, and using the hydroponic equipment. Our purpose is to develop a theoretical knowledge and practical understanding of the science and cultural practices of hydroponic crop production. Students complete the GSSM Research \& Inquiry Portfolio. Includes a 2-hour weekly lab. PREREQ: One year of previous high school biology and chemistry or concurrent enrollment in BIO202 and CHE100/CHE201/CHE203. Special Category: Fulfills GSSM Research \& Inquiry Requirement Special Approval: Instructor and Director of Research \& Inquiry
RES407C above AP or DC	Research in Soil Microbiota (SPRING Semester - 0.5 unit) In this introductory project-based experience, students will be active participants in the isolation and discovery of potential antimicrobial-producing microbes. Special emphasis will be given to bacterial and fungal soil communities. Using a project-based approach permits the course to progress from a survey of basic lab techniques to the application of current techniques in microbiology. The majority of the instructional time will be spent in a laboratory setting. Lectures will also be included to provide background and introduce new concepts. Communication skills will be encouraged by required up-to-date lab notebooks and

	follow up presentations. The course will be completed with a research forum in which the Inquiry Portfolio. Includes a 2-hour weekly lab. PREREQ: BIO201-AP and BIO202-AP or completion of AP Biology. Special Category: Fulfills GSSM Research \& Inquiry Requirement Special Approval: Instructor and Director of Research \& Inquiry

Chemistry

CHE100-H	Principles of Chemistry (A Full Year Course - 1.0 unit) This course will examine selected topics that are fundamental to an understanding of chemistry. Students will investigate the electronic structure of atoms, chemical bonding, chemical formulas, mass/volume relationships in chemical reactions, gas laws, energy changes in chemical reactions, molecular geometry, acid/base/salt reactions, colligative properties, an introduction to organic chemistry and other selected subjects. Hands-on laboratory work will reinforce concepts as well as develop skills in using standard laboratory equipment. Includes a 2-3-hour weekly lab.
CHE101-DE (Dual Credit with FMU) 4 hours of college credit	Dual-Enrollment Chemistry I (FALL Semester - 0.5 unit) This course covers the material typical in the first semester of college chemistry, including the states of matter; the gas laws; stoichiometry; electronic structure and bonding; periodicity; and solutions. Includes a 2-3-hour weekly lab. PREREQ: One unit in chemistry or permission of instructor.
CHE102-DE (Dual Credit with FMU) 4 hours of college credit	Dual-Enrollment Chemistry II (SPRING Semester - 0.5 unit) This course covers the material typical in the second semester of college chemistry, including oxidation-reduction; equilibria; electrochemistry; thermodynamics; acids and bases; kinetics; chemistry of the representative elements; coordination compounds of the transition elements; and nuclear chemistry. Includes a 2-3-hour weekly lab. PREREQ: CHE101-H or permission of instructor.
CHE150-H	Molecular Spectroscopy (SPRING Semester - 0.5 unit) This course will act as an overview of molecular spectroscopy, with a particular emphasis on the microwave region of the spectrum. Molecular spectroscopy is the use of electromagnetic radiation to study the structure and motion of molecules. It is impossible to "see" individual molecules, but an immense amount of information can be learned by studying the frequencies and intensities that they absorb and emit. After an overview of quantum mechanics and ultraviolet, visible, infrared, and nuclear magnetic resonance spectroscopy, students will undertake a laboratory-based research project in the area of microwave spectroscopy. They will use GSSM's custom-built chirped-pulse microwave spectrometer to design, implement, and analyze their individualized research project. Includes a 2-3-hour weekly lab. PREREQ or COREQ: GSSM CHE100-H or CHE201-AP; and calculus; or permission of instructor.
CHE201-AP (AP Chem)	Advanced Chemistry I (AP Chem) (FALL Semester - 0.5 unit) This course is for students who have already taken chemistry and would like to take the AP Chemistry exam. Topics explored include the structure and properties of atoms and compounds, intermolecular forces, chemical reactions, and kinetics. Pertinent labs related to

	course material will be performed. Includes a 2-3-hour weekly lab. PREREQ: One unit in Chemistry.
CHE202-AP (AP Chem)	Advanced Chemistry II (AP Chem) (SPRING Semester - 0.5 unit) This course is a continuation of 201. Topics explored include thermodynamics, equilibrium, acids and bases. Pertinent labs related to course material will be performed. Includes a 2-3hour weekly lab. PREREQ: CHE201-AP
CHE300 above AP or DC	Introduction to Organic and Biochemistry (FALL and/or SPRING Semester depending on interest- 0.5 unit) This is a one-semester course and will provide an introduction to the fundamental concepts of organic chemistry and biochemistry. Students will explore the name, structure and properties of certain classes of organic compounds. Also to be considered are some important biological processes related to enzymes, bioenergetics, intermediary metabolism, body fluids, and nutrition. Includes a 3-hour weekly lab. PREREQ: Completion of AP Chemistry or DE Chemistry.
CHE304 above AP or DC	Introduction to Analytical Chemistry (FALL Semester - 0.5 unit) This course will expose students to selected topics in both quantitative and instrumental analysis. The quantitative portion of the course will focus on advanced methods of volumetric analysis as well as statistics commonly used to properly analyze data. The instrumental portion of the course will focus on the theory and implementation of instruments that find widespread use in chemistry. Experiments will allow students to gain experience using various equipment that will likely be found in any standard analytical chemistry laboratory. Includes a 2-3-hour weekly lab. PREREQ: Completion of AP Chemistry or DE Chemistry.
CHE306 above AP or	Computational Chemistry (SPRING Semester - 0.5 unit) This course will act as an introduction to computational modeling of chemical and biological molecules. Using peer reviewed open-source software, we will learn how to calculate physical and chemical properties of molecules and how to simulate the motion of molecular systems. Applications to fundamental chemistry, biochemistry, medicinal chemistry, and bioengineering will be explored. While the underlying theory of modeling will be discussed in depth, we will be using existing software tools, not building them, so no computer programming knowledge is necessary. This is a hands-on course that will result in the student producing, under the guidance of the instructor, a project that demonstrates their understanding of modeling theory through the application of modeling tools to a real-world research problem. Includes a 2-3-hour weekly lab. PREREQ: Completion of AP Chemistry or DE Chemistry. PREREQ or COREQ: Calculus.
CHE308 above AP or DC	Introduction to Inorganic Chemistry (SPRING Semester - 0.5 unit) This course will expose students to selected subjects in inorganic chemistry. Topics to be explored will include metal bonding, coordination chemistry, group theory, and organometallic chemistry with a focus on transition metals. Laboratory exercises will cover different classes of qualitative analysis as well as synthesis and characterization of transition metal complexes. Includes a 2-3-hour weekly lab. PREREQ: Completion of AP Chemistry or DE Chemistry.

CHE401-H	Research in Microwave Spectroscopy (FALL Semester - 0.5 unit) Students will complete a research project in microwave spectroscopy that has never been done before. The course will provide a hands-on, active-learning experience using GSSM's state-of-the art microwave spectrometer, an instrument used to discover the shapes of molecules. Activities will include using modern instrumentation, using research software to analyze data sets, performing quantum chemical calculations, and formulating conclusions from the data. Students will undertake an original research project similar to an advanced undergraduate project. Students complete the GSSM Research \& Inquiry Portfolio. Includes a 2-hour weekly lab. Special Category: Fulfills GSSM Research \& Inquiry Requirement Special Approval: Instructor and Director of Research \& Inquiry
CHE403-H	Research in Computational Drug Design (FALL and/or SPRING Semester - 0.5 unit) Modern pharmaceutical drug design is a multidisciplinary endeavor at the interface between medicine, chemistry, biology, and computer science. Using the tools and theory of computational biochemistry, this opportunity aims to guide the student through research- based project creation and execution to ultimately develop a novel pharmaceutical that attempts to address a real-world need. No programming experience is required. Students complete the GSSM Research \& Inquiry Portfolio. Includes a 2-3-hour weekly lab. PREREQ: CHE100-H, CHE201-AP. Special Category: Fulfills GSSM Research \& Inquiry Requirement Special Approval: Instructor and Director of Research \& Inquiry

Chinese

CHI101-DE (Dual Credit with Coker)	Introduction to Chinese I (FALL Semester - 0.5 unit) This is the first half introductory course to Mandarin Chinese. It provides an introduction to the fundamentals of the Mandarin Chinese language. It emphasizes pronunciation, basic everyday conversational proficiency, principles of character formation, vocabulary and shours of college credit
elements of grammar needed to develop communicative competence in Chinese at a basic level. In addition, it aids the students in understanding the connection between Chinese language and culture; help the students develop survival skills in an authentic Chinese setting. Prerequisite: None.	
CHI102-DE (Dual Credit with Coker)	Introduction to Chinese II (SPRING Semester - 0.5 unit) This is the second half introductory course to Mandarin Chinese. It provides an introduction to the fundamentals of the Mandarin Chinese language. It emphasizes pronunciation, basic everyday conversational proficiency, principles of character formation, vocabulary and elements of grammar needed to develop communicative competence in Chinese at a basic college credit level. In addition, it aids the students in understanding the connection between Chinese
language and culture; help the students develop survival skills in an authentic Chinese	
setting. PREREQ: CHI101 or previous Chinese credits.	

3 hours of college credit	communication ability in real Chinese settings. Different aspects of Chinese culture are included. Prerequisite: $C H$ I 102 or the equivalent.
CHI202-DE (Dual Credit with Coker)	Intermediate Chinese IV (SPRING Semester - 0.5 unit) This is the second half intermediate level course in Mandarin Chinese. As the continuation of Elementary Chinese, this course focuses on reinforcing four language skills: speaking, listening, reading and writing to enhance each student's oral and written communication ability in real Chinese settings. Different aspects of Chinese culture are included. PREREQ: CHI college credit 201 or permission of instructor.

Computer Science

Note: Students taking CSC101, CSC110, or ENGIN141 are strongly advised not to take a second computer science course that same semester.

$\begin{aligned} & \text { CSC101-AP } \\ & \text { (AP CS A) } \end{aligned}$	Introduction to Computer Science (AP CS A) (FALL Semester - 0.5 unit) General concepts of sequential execution, conditional execution, iterative structures, recursive techniques and algorithm development are introduced in this one-semester course. In addition, general principles of program construction and object-oriented programming, are covered thoroughly. The activities in class include writing algorithms for specific application problems and implementing the code for these projects. The primary focus of outside-of-class work is to write functioning, efficient, well-documented, wellconstructed programs. If no computer science credit was earned prior to enrolling at GSSM and a student enrolls in this course, the student will be required to enroll and earn credit in an additional computer science course in order to meet the state computer science requirement of 1.0 units.
$\begin{aligned} & \hline \text { CSC102-AP } \\ & \text { (AP CS A) } \end{aligned}$	Advanced Computer Programming (AP CS A) (SPRING Semester - 0.5 unit) A review of arrays, classes, and recursion will preface the continuation of the study of computer science in the second semester. The concepts of object-oriented programming including class declaration and design, inheritance, interfaces and polymorphism are integral to programming activities in this course. Abstract data types will be introduced and implemented by the study of the List interface and Java Linked Lists. Sorting and searching algorithms will be examined in order to determine efficiency and storage considerations. Students will be assigned exercises including short answer and free response projects similar to those found on the AP CS A exam. PREREQ: CSC101-AP or permission of instructor. *(Completion of this course earns the final 0.5 credit of the 1.0 credit provided in CSC101 \& CSC102 AP course sequence.)
CSC110-DE (Dual Credit with Coker) 4 hours of college credit	Computer Science I: Python for Scientist (FALL/SPRING Semester - 1.0 unit) This course introduces Python, an interpreted, object-oriented, powerful scripting language used in a variety of applications. Its high-level constructs, dynamic typing, and extensive libraries make it attractive for Rapid Application Development. It's simple, easy to read syntax emphasizes readability and eases the edit-test debug cycle which increases productivity. In this course students will learn how to use Python from writing utility scripts to developing custom 2D and 3D graphics applications. This course will satisfy the state

	requirement of 1.0 units of computer science since it is dual enrolled. This course will meet 4 times a week.
CSC160-H	Introduction to Computer Networking (FALL Semester- 0.5 unit) This course is a survey of the underpinnings of computer networks. It will cover the basics of network architecture, topology, protocols, and telecommunications. Students will learn how a request on a web browser is packaged and transferred over the Internet to a destination address and how the results of the request are processed and delivered back again. By the end of the course students will have demonstrated a competence in IP addressing, packet tracing, OSI and TCP/IP models, and configuring routers and switches to use networking protocols. The course is a mixture of discussion and hands-on activities.
CSC202 above AP or DC	Game Design, Prototyping, and Production (SPRING Semester - 0.5 unit) This course will focus on the rules and methods of game design, which remain fairly constant regardless of the technology used to develop a game. While technology will play a significant role in the course, technological details will not be the focus. Students will study and design games of all sorts: card games, dice games, athletic games, story games, and video games. Students will craft a game, build a video game prototype, and write a game design document detailing the workings of their creation. COREQ: CSC230 or permission of instructor.
CSC220 above AP or DC	Interactive Visual Programming using Processing (FALL Semester - 0.5 unit) Students will explore computer graphics, mathematics, and art using the Processing programming language. Processing is an environment for learning the fundamentals of computer programming within the context of the visual arts. Topics include creation of 2 d and 3d images, animations, image processing including mathematical and data visualization, and interaction with external devices. COREQ: CSC230 or permission of instructor.
CSC230 above AP or DC	Data Structures and Algorithms (FALL/SPRING Semester - 0.5 unit) A second course in computer science in which students are introduced to algorithm design and analysis, big-Oh notation, and algorithm classification by efficiency and correctness. The course covers basic algorithm design, strategies, mathematical analysis, and approaches to problem solving. Topics include algorithms for searching and sorting, graph theory and graph algorithms, and other computational problems. This course is designed for students who already know a programming language and would like to continue taking advanced electives in computer science. PREREQ: CSC101 and CSC102, or CSC 110, or as a COREQ: CSC102 and permission of instructor.
CSC260-H	CyberSecurity Fundamentals (SPRING Semester - 0.5 unit) In the Computer and Information Systems Security/Information Assurance program, students examine the core concepts and terminology of cybersecurity and information assurance, integrating the importance of user involvement, network architecture, threats, and security; operational and system security; cryptography; contingency planning; application, data, and host security; access control and identity management; and a broad range of other topics. Students will be prepared to earn nationally-recognized industry certifications. Prerequisite CSC160-H Introduction to Computer Networking or permission of the instructor.

$\left.\begin{array}{|l|l|}\hline \text { CSC270 } & \begin{array}{l}\text { Introduction to Database Design (FALL Semester - 0.5 unit) } \\ \text { above AP or DC }\end{array} \\ \text { In this course, students will learn to construct database(s) and the techniques necessary to } \\ \text { manipulate and maintain the data stored therein. Using readily available DBMS, students } \\ \text { will study database architecture, methods of modeling data, schemas, and query languages. } \\ \text { By the end of the course students will have demonstrated a competence in writing SQL } \\ \text { queries, applying normalization techniques to datasets, database design, manipulating and } \\ \text { navigating relational databases, and representing an information system using an entity- } \\ \text { relationship diagram (ERD). COREQ: CSC230 or permission of instructor. }\end{array}\right\}$

	the instructor and submit that proof to the LEAN mathlib library. Students complete the GSSM Research \& Inquiry Portfolio. Special Category: Fulfills GSSM Research \& Inquiry Requirement Special Approval: Instructor and Director of Research \& Inquiry

Engineering

Introductory

ENGIN201-H	What is Science, Technology, and Engineering? (0.5 credits) Students interested in engineering, technology, or science who don't just want to seek out solutions to the world's most challenging problems, but who want to ensure that those solutions are applied and carried out in an equitable manner, will benefit from this seminar- style course. They will develop a critical awareness of the institutions, policies, and practices that shape the making of emerging scientific knowledge and decision making, particularly in moments of uncertainty. Through case studies, lectures, short readings, research articles, and current policy briefs this course provides the opportunity for students to engage with some of today's most contested technological, political, and ethical debates around topics like establishing scientific truth, internet privacy, genetic engineering, biotechnology, artificial intelligence, drones, and energy transitions. Students will leave better equipped for their own future encounters with technoscience in our technologically, mediated society. (Course is open to both Juniors and Seniors).
ENGIN205-H	Applications of Engineering Design (FALL Semester - 0.5 unit) For students interested in learning more about various engineering disciplines. If you have had the 2 PLTW courses, "Intro to Engineering Design" and "Principles of Engineering," you might consider a more advanced engineering course. Students do projects using 3D design in SolidWorks, electronics and programming of the Arduino, robotics, and engineering design.
CSC402-H	Robotics (FALL Semester - 0.5 unit) General principles of engineering design including mechanical, electrical, logic and control subsystems of robotics are applied to building robots. Project planning and team cooperation are critical skills that are developed in the course, including creating timelines, determining critical path, communicating with other team members, and presenting ideas and solutions to a customer or sponsor. Project members learn how to employ team talents to maximize productivity and minimize the time necessary to complete the task. Each robot microcomputer system must be programmed to control the robot's movement and sensors. The main objective for the course is to use engineering and management principles to build a robot to accomplish a set of specific tasks. A student can sign up for the course in their junior or senior year. Juniors who take robotics and would like to continue working with the robotics teams are encouraged to do so as a team member, not a class member in their senior year.

ENGIN209-H	Biomedical Engineering (SPRING Semester - 0.5 unit) This course taught online with periodic live instruction via the GSSM Accelerate Program. This course introduces students to the different sub-specialties of biomedical engineering (BME) including bioelectricity, biomedical instrumentation, biomaterials, and biomechanics. Through hands-on labs, design projects, problem sets, and research article review, students explore and experience the engineering design process, problem solving and troubleshooting in the field of BME. Some questions that might be addressed are: "how are electrical signals from the heart measured outside the body?", "is there a way to design high heel shoes that don't hurt women's feet?", and "how do engineers design heart valves that only allow blood flow in one direction?".
ENGIN212-H	Aerospace Engineering (FALL/SPRING Semester - 0.5 unit) This course introduces students to the field of aerospace engineering. It integrates engineering design with core math and science concepts needed to solve problems related to aerospace engineering. Students will explore the fundamentals of flight in air and space through software simulations and hands-on experiences. They will explore the fundamentals of flight such as airfoil, propulsion systems, and a rocket. In addition, students will learn orbital mechanics concepts and apply these by creating models using industry- standard software. They will also apply aerospace concepts to alternative applications such as a wind turbine and parachute.

Intermediate

ENGIN102-DE (Dual Credit with Coker) 3 hours of college credit	Engineering Disciplines and Skills (FALL/SPRING Semester - 0.5 Units) This course provides a solid foundation of skills to solve engineering problems. Students demonstrate problem solving techniques with spreadsheets, dimensions and units, and use modeling techniques and interpret validity of experimental results. Students design projects on multi-discipline teams. The course introduces professional and societal issues appropriate to engineering. Various forms of technical communication are emphasized. PREREQ: CHE 100 COREQ: MAT102-H or above, or permission of instructor.
ENGIN105C	Introduction to Civil Engineering I (FALL Semester - 0.5 Units) This course introduces students to the fundamental principles, theories, and practices in the field of Civil Engineering. Emphasis is placed on understanding the interdisciplinary nature of Civil Engineering and its impact on society, economy, and the environment. Through theoretical instruction, practical case studies, and hands-on projects, students will develop critical thinking skills and problem-solving abilities necessary for addressing real-world engineering challenges. By the end of this course, students will have an overall knowledge in the principles of Civil Engineering, enabling them to pursue advanced coursework and careers in various specialized areas within the discipline.
ENGIN106C	Introduction to Civil Engineering II (SPRING Semester - 0.5 Units) This course provides an overview of Civil Engineering and more detailed and in-depth instruction to select fields including Water Resources and Harbor Engineering, Coastal and Ocean Engineering, Surveying, Remote Sensing and GIS, and Construction Engineering. Critical thinking skills are fostered by hands-on experience. Field trips are arranged to South Carolina coasts and/or construction sites. PREREQ: ENGIN103

ENGIN207-H	Engineering: Electronics (SPRING Semester - 0.5 unit) Students are introduced to the principles of analog and digital electronics. In addition to learning about simple analog circuits, the course also covers a variety of topics including Boolean algebra, basic gates, logic circuits, flipflops, registers, digital circuits, counters, interfacing with analog devices, and programming an FPGA board. Includes a 2-hour weekly lab.
ENGIN208-DE (Dual Credit with Coker)	Engineering Design and Modeling (SPRING Semester - 0.5 unit) Students join the 3D printing revolution in learning how to create their designs in SolidWorks, including sketching, part and assembly creations, and creating drawings with which to communicate their ideas. A final project will include 3D printing their design. This course is dual enrolled.
3 hours of college credit	dind

Advanced

ENGIN141-DE (Dual Credit with Coker)	Computer Programming 1 with MATLAB (FALL/SPRING Semester - 1.0 unit) Involves programming and problem-solving using MATLAB. General concepts of sequential execution, conditional execution, iterative processes, and recursive techniques are introduced in this one-semester course with the objective of solving problems in science and college credit engineering. Matrix manipulation, plotting of functions and data, implementation of algorithms, and creation of user interfaces comprise the curriculum for this course. The activities in class include designing and implementing computerized applications to solve problems from different disciplines. The primary focus of outside-of-class work is to design, develop, and write the commands to find these solutions. PREREQ: ENGIN102 or permission of instructor. This course will satisfy the state requirement of 1.0 units of computer science since it is dual enrolled.
ENGIN206-H	Engineering Mechanics: Statics (SPRING Semester - 0.5 unit) This course studies the mechanics of static structures. Topics covered in this course include vector force systems, systems in equilibrium, structural analysis of trusses and frames, friction, distributed forces, center of gravity, and moment of inertia. Technical drawing and design skills will be used to build a bridge structure out of bass wood and test its strength. PREREQ: PHY151-AP, PHY201-AP or permission of instructor. Includes a 2-hour weekly lab. This course may or may not be offered depending on the availability of an instructor.
ENGIN210-H	Engineering: Product Design (Project Design) (SPRING Semester - 0.5 unit) Students research and develop a new product or process. The product can be either an invention or innovation and should include the building of a prototype. The process should be a new way of doing something of a technical nature. Students will communicate their solutions to their peers and members of the professional community. This course is intended for students with advanced knowledge of engineering techniques and the design process. Ideally, they will have taken at least one engineering course at GSSM, as well as the two PLTW courses Introduction to Engineering Design and Principles of Engineering. Students work in groups to identify and define a problem, need, or desire that requires a technical solution, and then spend the semester working on a prototype, while using the design process to guide their work. Students share and explore their ideas, with frequent cross-fertilization

	occurring between groups. One outcome of this course might be that students enter their design in the MIT-Lemelson Inventeams Design Competition. PREREQ: Permission of instructor.
ENGIN401-H	Research in Multimodal Transportation Systems (A Full Year Course - 1.0 unit) The aim of this research course is to teach students how to advocate for specific infrastructure and policy solutions aimed at making Hartsville's transportation systems more sustainable, equitable, and accessible. Students gain background knowledge about the political, social, and technological procedures involved in creating and maintaining sustainable transportation systems and livable communities through reading and analysis of both current research and historical texts. Students also interview stakeholders involved in infrastructure developments such as elected officials, engineers, architects, city planners, academic experts, and advocates. Students engage in participant observation, actively traveling on and using pedestrian and cycling infrastructure locally and regionally to understand the user experiences directly. Learning from these experiences, students will Inquiry Portfolio. Special Category: Fulfills GSSM Research \& Inquiry Requirement Special Approval: Instructor and Director of Research \& Inquiry

English

Junior English

\(\left.$$
\begin{array}{|l|l|}\hline \text { ENG111-DE } \\
\text { (Dual Credit } \\
\text { with Coker) } \\
3 \text { hours of } \\
\text { college credit }\end{array}
$$ \quad \begin{array}{l}English Composition and Rhetoric I (FALL Semester - 0.5 unit)

English 111 is the first half of the required two-course sequence in composition. This course

introduces students to the modes of writing, with an emphasis on exposition and

argumentation. The course also reviews basic processes of composing: inventing, planning,

drafting, and revising. Students will learn how to develop ideas in a clear and logical manner,

communicate their ideas coherently to their intended audience, and write in a correct and

effective way. In addition to writing several in-class essays and short papers, students will

learn the techniques and conventions of academic research. They will participate in at least

one session on library and information technology. Fiction and nonfiction readings will

provide discussion material and starting points for their writing.\end{array}\right\}\)| ENG112-DE | English Composition and Rhetoric II (SPRING Semester - 0.5 unit)
 (Dual Credit
 with Coker)English 112 is the second half of the required two-course sequence in composition. This
 course advances students' critical reading and writing skills by exploring how writing creates
 knowledge and shapes meaning. The course also reviews basic processes of composing:
 inventing, planning, drafting, and revising. Students will learn how to develop ideas in a clear
 and logical manner, communicate their ideas coherently to their intended audience, and
 college credit
 write in a correct and effective way. In addition to writing several in-class essays and short
 papers, students will learn the techniques and conventions of academic research. They will
 participate in at least one session on library and information technology. Fiction, poetry, and
 nonfiction readings will provide discussion material and starting points for their writing.
 PREREQ: ENG111. |
| :--- | :--- |

Senior English

ENG201-DE (Dual Credit) 3 hours of college credit	World Literature I (Coker ENG 207) (FALL Semester - 0.5 unit) A study of literary works covering a diverse range of cultures, time periods, and genres. Students will consider how and why cultures produce literature, while learning to interpret and understand different types of texts. By the end of each course, students will describe how literature builds social, cultural, and ideological understanding. This first course in the sequence covers works from the ancient and pre-modern periods Prerequisite: ENG 111 or equivalent. PREREQ: ENG112.
ENG202-DE (Dual Credit) 3 hours of college credit	World Literature II (Coker ENG 209) (SPRING Semester - 0.5 unit) A study of literary works covering a diverse range of cultures, time periods, and genres. Students will consider how and why cultures produce literature, while learning to interpret and understand different types of texts. By the end of each course, students will describe how literature builds social, cultural, and ideological understanding. This second course in the sequence covers works starting with the early modern period PREREQ: ENG201.

Electives

ENG208-H	AI and the Future of Writing (0.5 unit) Language permeates our social, political, and personal life; it enables our marvelous complexity of thought, and it shapes our values and conceptions of self-identity. It's been argued that language is what makes us human, and that writing is our most fundamental human technology. Yet OpenAl's public release of ChatGPT in late 2022 has challenged this notion, revealing that humanity can no longer lay exclusive claim to language and writing. In this course, we explore the far-reaching implications of Al technology's intervention in language and writing. We will work with AI tools to produce writing in creative, practical, and academic contexts, exploring the technology's potential as well as its limitations. While doing so, we critically examine key questions posed by Al tools like ChatGPT. How does human-AI collaboration challenge established notions of authorship, identity, and originality? How can we address issues of bias and fairness in AI algorithms? What social and political consequences arise from the widespread dissemination of Al-generated work? Ultimately, our work with ChatGPT and similar technologies will make us consider how AI is reshaping the world and our place within it, in ways both promising and perilous.
ENG 215C-DE (Dual Credit with Coker)	Writing in STEM (FALL Semester - 0.5 unit) In this course, students will investigate the circumstances and genres in which STEM professionals communicate. The course combines readings that examine the social, political, economic, and ethical impacts of scientific, engineering, and mathematics knowledge in society. Such readings will serve as the basis of writing and addressing specific audiences in the disciplines. This course builds on what was previously learned in Junior Writing and
3 hours of	
college credit	
Composition by allowing students more freedom to dive deeper into individual topics, texts,	
and issues. PREREQ: ENGL/SH 112.	

(Dual Credit with Coker) 3 hours of college credit	have determined what is right, good and appropriate. Moreover, students will explore how writers have addressed the ways individuals and groups have resisted or revered cultural constructions of stigmatized, demonized or vilified behaviors in various contexts and situations. This section of ENG 220 examines the intersection of dystopian fiction and ethics. Students will analyze how writers in this genre employ literary techniques to both diagnose social ills and offer potential remedies.
ENG304-H	Introduction to Film (SPRING Semester - 0.5 unit) This elective is devoted to the understanding and appreciation of the art of film. Students will watch milestones of cinema history, learning to analyze the various language systems involved such as mise en scene, of editing, acting, screenwriting, camera angles, and cinematography, as well as the ideological underpinnings of films. The course is writing intensive and includes a response journal, movie analyses, and reviews. Students will become better observers and writers as they gain cineliteracy. COREQ: ENG112.
ENG305 above AP or DC	Studies in Creative Writing: Fiction (SPRING Semester - 0.5 unit) This course will serve as an introduction to the craft of fiction writing in a traditional workshop setting. The aim is to help students hone their fiction reading, writing, and analytical skills by examining the history of the short story, giving special emphasis to contemporary short story writers from around the globe. Through careful reading of the chosen texts, students will gain a clearer sense of what makes successful stories and use that knowledge to then write their own. Students will be expected to engage in the writing and revision process as well as peer workshops. At semester's end, participants will have an opportunity to share their work in a public reading. PREREQ: ENG 112 or permission of instructor.
ENG306 above AP or DC	African American Literature (FALL Semester - 0.5 unit) In this course, we will examine how African American writers determinedly inserted themselves into the national discourse from earliest days, using language to fight for the recognition of personhood as well as the extension of rights. From there, we will follow the elaboration of a rich and complex artistic tradition as various writers wrestle with the question of what it means to be a person of color in America. As we consider texts from many genres, we will think about the ways in which other categories, such as gender and class, have pressed on that question. Look forward to good conversation, along with writing projects, short presentations, and archival research. PREREQ: ENG112 or permission of instructor.
ENG307 above AP or DC	Studies in Creative Writing: Nonfiction (FALL Semester - 0.5 unit) This course will serve as an introduction to the craft of creative nonfiction writing in a traditional workshop setting. The aim is to help students hone their nonfiction reading, writing, and analytical skills by examining the history of the short essay and focusing more specifically on contemporary writers of the bestselling genre of writing being published today. Through a careful reading of the chosen texts, students will gain a clearer sense of what makes successful creative nonfiction and use that knowledge to write their own. Students will be expected to engage in the writing and revision process as well as peer workshops. At semester's end, participants will have an opportunity to share their work in a public reading. PREREQ: ENG112.

$\left.\begin{array}{|l|l|}\hline \text { ENG308 } \\ \text { above AP or DC } & \begin{array}{l}\text { Introduction to Philosophy (FALL Semester - 0.5 unit) } \\ \text { "If you would be a real seeker after truth, it is necessary that at least once in your life you } \\ \text { doubt, as far as possible, all things." In this course, we take Rene Descartes' challenge } \\ \text { seriously and push at the limits of what we claim to "know." In addition to reading } \\ \text { foundational works in Western philosophy, students will examine enduring topics of } \\ \text { philosophical inquiry in epistemology, metaphysics, and ethics. Literature, film, and legal } \\ \text { cases will provide us with ample and entertaining opportunities to apply philosophical } \\ \text { concepts. Some questions we may consider are: what distinguishes true knowledge from } \\ \text { mere opinion? Is absolute knowledge possible? What constitutes reality? Does life have } \\ \text { meaning? Is math real in the same way that a tree is real? Do we have free will, or is the } \\ \text { course of our lives in some manner already determined? What, exactly, is time? Or space? Or } \\ \text { matter, for that matter? We will also use philosophical insight to debate knotty ethical and } \\ \text { political questions: Is eating meat moral? What about cloning, or gene editing? Our ultimate } \\ \text { goal, then, is to break the trance of "common sense" and produce reasoned responses to } \\ \text { enduring questions about the nature of human existence. PREREQ: ENG112 or permission of } \\ \text { instructor. }\end{array} \\ \hline \text { ENG309-H } & \begin{array}{l}\text { Introduction to Science Fiction: Literature (FALL Semester - 0.5 unit) } \\ \text { In this class, we will examine the history and influence of science fiction, a genre defined by } \\ \text { Robert A. Heinlein as "realistic speculation about possible future events." The class will } \\ \text { explore the genre foundation works written by H.G. Wells, H. P. Lovecraft, and George Orwell, } \\ \text { and then study novels and short stories that depict post- apocalyptic and cyberpunk themes, } \\ \text { dystopias, time travel, alternate history, aliens, and others. In the midst of these readings, we }\end{array} \\ \text { will consider how science fiction often reflects the sociological, philosophical, and } \\ \text { environmental concerns of the period in which it was written. Students will keep a journal of } \\ \text { reading reactions, make class presentations, and write several short essays. COREQ: ENG111. }\end{array}\right\}$

	stage productions (including, when possible, field trips to live productions), and produce our own dramatic interpretations of key scenes. Students will come away from the course with a deep understanding of several of Shakespeare's richest and most well-loved plays and an appreciation for his enduring legacy. COREQ: ENG111.
ENG313 abrtual Course	Eco-Fiction (SPRING Semester - 0.5 unit) In this course, we will explore how artists use language to influence our feelings towards, and understandings of, the natural world. We will track down answers to questions like: What is "the environment" and how is it shaped by processes of representation? How has environmental writing changed throughout history, from the Industrial Revolution to Chernobyl to now: the Anthropocene? We will pay particularly close attention to climate change fiction, a burgeoning genre that emphasizes the increasingly precarious relationship between human beings and their environments. After surveying some of the foundational texts in environmental studies, we will transition to more contemporary works: Octavia
Butler's Parable of the Sower, Samanta Schweblin's Fever Dream, and Jeff VanderMeer's	
Annihilation. Students can also expect to view films like Eating Animals, Racing Extinction,	
and, at the end of the semester, the eco-comedy Wall-E. Students will write a close reading	
paper, an ethical reasoning paper, and a final research paper on an environmental	
humanities topic of their choosing. PREREQ: ENG112 or permission of instructor.	

French

FRE101-H	French I (A Full Year Course - 1.0 unit) In this course, we cover the French alphabet, numbers, and phonetic system before covering the present tense of most verb types and touching briefly on the present perfect tense. In addition to learning basic grammar and vocabulary, we explore French culture through texts and videos about music, travel, fashion, food, sports, etc. as well as engaging in some discussion of Francophone societies outside France. We spend the majority of our time in class practicing our spoken French. By the end of the year, students should achieve a communicative proficiency in written and spoken French equivalent to the Novice Mid or Novice High level as described by the American Council on the Teaching of Foreign Languages (ACTFL).
FRE201-H	French II (A Full Year Course - 1.0 unit) In this course, we quickly review the grammar of the present indicative before covering the present perfect, imperfect, and pluperfect tenses (also of the indicative mood) and touching briefly on the subjunctive mood. In addition to learning basic grammar and vocabulary, we explore French culture through texts and videos about music, travel, fashion, food, sports, etc. as well as engaging in some discussion of Francophone societies outside France. We spend the majority of our time in class practicing our spoken French. By the end of the year, students should achieve a communicative proficiency in written and spoken French equivalent to the Intermediate Low or Intermediate Mid-level as described by the American Council on the Teaching of Foreign Languages (ACTFL). PREREQ: FRE101 or permission of instructor.

$\left.\begin{array}{|l|l|}\hline \text { FRE301-H } & \begin{array}{l}\text { French III (A Full Year Course - 1.0 unit) } \\ \text { In this course, we quickly review the grammar of the present indicative, present perfect, and } \\ \text { imperfect tenses before studying the pluperfect and future tenses (also of the indicative } \\ \text { mood) as well as the present subjunctive and conditional moods. In addition to learning } \\ \text { grammar and mid-level vocabulary, we explore Francophone cultures in Europe, North } \\ \text { America, Africa, and the Pacific through texts and videos about music, travel, fashion, food, } \\ \text { sports, etc. We spend the majority of our time in class practicing our spoken French. By the } \\ \text { end of the year, students should achieve a communicative proficiency in written and spoken } \\ \text { French equivalent to the Intermediate High or Advanced Low level as described by the } \\ \text { American Council on the Teaching of Foreign Languages (ACTFL). PREREQ: FRE201 or } \\ \text { permission of instructor. }\end{array} \\ \hline \text { FRE401-H } & \begin{array}{l}\text { French IV (A Full Year Course - 1.0 unit) } \\ \text { In this course, we quickly review the grammar of the major tenses and moods of the French }\end{array} \\ \text { language before spending the rest of the class adding to vocabulary and improving } \\ \text { paragraph-length communication skills. In addition to learning grammar and mid-level and } \\ \text { advanced vocabulary, we explore Francophone cultures in Europe, North America, Africa, and } \\ \text { the Pacific through texts and videos about music, travel, fashion, food, sports, etc. We spend } \\ \text { the majority of our time in class practicing our spoken French. All texts and language use are } \\ \text { in French, except when comparisons between English and French are studied; and analysis, } \\ \text { synthesis, and evaluation are stressed. Advanced modes of communication (interpersonal, } \\ \text { interpretive and presentational) are used in accordance with state and national standards. } \\ \text { Clear effective communication within the language is expected from the students. By the end } \\ \text { of the year, students should achieve a communicative proficiency in written and spoken }\end{array}\right\}$

General Science

Note: These courses do not count towards the GSSM's Lab Science Graduation Requirements.

SCI301-AP (AP Env Sci)	Environmental Science (AP Env Sci) (FALL Semester -0.5 unit) This course will provide students with the scientific principles, concepts, and methodologies required to understand the interrelationships of the natural world, to identify and analyze environmental problems, and to examine solutions for resolving or preventing them. Topics from geology, biology, environmental studies, chemistry, and human geography will be integrated into this course. Students may choose to take the AP environmental science exam. Includes a 2-hour weekly lab. PREREQ One year of previous high school biology and chemistry. Completion of or concurrent enrollment in AP Biology is preferred. Extra readings may be assigned if deficiencies in background knowledge emerge. Seniors are given first priority. Does not count towards GSSM's lab science graduation requirement.
PHY210-H	Astronomy (SPRING semester - 0.5 unit) This survey course of historical and modern astronomy includes such topics as planetary astronomy, spectroscopy, and stellar structure and evolution. Includes a 2-hour weekly lab. Does not count towards GSSM's lab science graduation requirement. This course may or may not be offered depending on the availability of an instructor.

German

Note: These courses are taught online via live instruction through the Governor's School for Arts and Humanities.

GER200-H Synchronous Virtual Course	Honors German II (A Full Year course - 1.0 unit) This course is based on linking language skills of listening, reading, writing, and speaking. It also (offers insights into the) addresses German culture. Since the class is a multi- level class, ranking from German II learners with basic skills to upper-level students, various themes and grammatical structures will be (covered) studied in order to ensure that every student can improve his individual level of proficiency. PREREQ: German /
GER300-H Synchronous Virtual Course	Honors German III (A Full Year course - 1.0 unit) This course is based on linking language skills of listening, reading, writing, and speaking. It also (offers insights into the) addresses German culture. Since the class is a multi- level class, ranking from German III learners with basic skills to upper-level students, various themes and grammatical structures will be (covered) studied in order to ensure that every student can improve his individual level of proficiency. PREREQ: German I/
GER400-H Synchronous Virtual Course	Honors German IV (A Full Year course - 1.0 unit) This course is based on linking language skills of listening, reading, writing, and speaking. It also (offers insights into the) addresses German culture. Since the class is a multi- level class, ranking from German III learners with basic skills to upper-level students, various themes and grammatical structures will be (covered) studied in order to ensure that every student can improve his individual level of proficiency. PREREQ: German III
GER-AP Synchronous Virtual Course	German-AP (A Full Year course - 1.0 unit) This course is based on linking language skills of listening, reading, writing, and speaking. It also (offers insights into the) addresses German culture. Since the class is a multi- level class, ranking from German III learners with basic skills to upper-level students, various themes and grammatical structures will be (covered) studied in order to ensure that every student can improve his individual level of proficiency. PREREQ: German IV

Government, Economics, And Finance

HIS201-H	US Government /Economics (FALL/SPRING Semester or during summer or interim - 0.5 unit) Offered on-campus or online during the fall and spring semesters, depending on instructor availability. Offered online during the interim term for students taking on-campus courses. Offered online during the summer for rising seniors. This one semester course is an overview of the structure of U.S. government and its basic functions. Various theories of government are incorporated into the course curriculum. The primary emphasis of the course is a study of public policy at all levels of government, integrating government and fundamental principles in economics. Specific areas of emphasis include taxation, fiscal policy, monetary policy, and business regulation. This class will meet the state graduation requirement for both government and economics. This course is offered online during the summer and interim semesters.

HIS202-AP (AP US Gov)	AP US Government (FALL Semester - 0.5 unit) This course provides students with an analytical perspective on governmental processes and politics in the United States. This course includes both the study of general concepts used to interpret U.S. government and politics and the analysis of specific "real world" examples. The course requires familiarity with the various institutions, groups, beliefs, and ideas that constitute U.S. government and politics. Students will be introduced to a variety of theoretical perspectives and explanations for given behaviors and outcomes relative to public policy. Note: If a student takes this course and either ECON210 (Macroeconomics) or ECON211 (Microeconomics) the state graduation requirement for government and economics will be satisfied.
HIS203-AP	AP Comparative Government (SPRING Semester - 0.5 unit) Introduces the field of comparative politics, stressing comparative concepts and approaches to the cross-national study of politics and government, with examination of political systems, ranging from democratic to nondemocratic.
ECON210-DE (Dual Credit with FMU)	Principles of Economics: Macroeconomic Concepts (SPRING Semester- 1.0 unit) This course taught online with synchronous instruction. Macroeconomics gives students a thorough understanding of the principles of economics that apply to an economic system as a whole. Such a course places particular emphasis on the study of national income and price determination, and also develops familiarity with economic performance measures, economic growth, and international economics.
college credit	

History

HIS101-AP (AP US His)	History of the United States from 1607 to the Present (A Full Year Course - 1.0 unit) This full-year advanced placement course traces the major events, trends, and themes of American life from the colonial era to the present. Outside reading assignments, including primary sources, enhance the understanding of America's past while showing its connection to our present time. The fall semester includes a study of the Constitution and the origins and functions of the federal government. If this course has not already been taken, then it must be taken during the Junior year.
HIS202-AP (AP US Gov)	AP US Government (FALL Semester - 0.5 unit) This course provides students with an analytical perspective on governmental processes and politics in the United States. This course includes both the study of general concepts used to interpret U.S. government and politics and the analysis of specific "real world" examples. The course requires familiarity with the various institutions, groups, beliefs, and ideas that constitute U.S. government and politics. Students will be introduced to a variety of theoretical perspectives and explanations for given behaviors and outcomes relative to public policy. Note: Ifa student takes this course and either ECON210 (Macroeconomics) or ECON211 (Microeconomics) the state graduation requirement for government and economics will be satisfied.
HIS203-AP	AP Comparative Government (SPRING Semester - 0.5 unit) Introduces the field of comparative politics, stressing comparative concepts and approaches to the cross-national study of politics and government, with examination of political systems, ranging from democratic to nondemocratic.
HIS302-H	Colonial Latin America (FALL Semester; Offered even numbered years - 0.5 unit) This one-semester elective course requires no prerequisites and is open to juniors and seniors. The class will explore the political, cultural, and social developments within the
Americas from the pre-Columbian period through the Age of Revolution in the early 19th	
century. Assigned readings will expose students to indigenous literature and art, the role of	
ethnicity and gender in the colonial period, and the creation of new American identities. A	
final project is required.	

$\left.\begin{array}{|l|l|}\hline \text { HIS309-H } & \begin{array}{l}\text { The Civil War and Reconstruction (SPRING Semester; Offered odd numbered years - 0.5 unit) } \\ \text { This course studies social, economic, cultural, and political forces that led to the Civil War, and } \\ \text { how these forces determined the course and outcome of the war. The course intensively } \\ \text { studies the successes and failures of the Reconstruction, and how the legacy of the post-war } \\ \text { period still affects America. Themes include military strategies and problems, the African } \\ \text { American experience, the role of women, and the home front. Course requirements include } \\ \text { extensive reading and discussion of primary documents that help explore related themes and } \\ \text { problems. A term paper is required. }\end{array} \\ \hline \text { HIS313-H } & \begin{array}{l}\text { The Sizzling Sixties (SPRING Semester; Offered odd numbered years - 0.5 unit) } \\ \text { This one-semester elective requires no prerequisites and is open to juniors and seniors. The } \\ \text { class studies the 1960s through historical context. The tumultuous decade challenged post- } \\ \text { World War II values and ideologies, and it left a permanent imprint on American society, } \\ \text { government, and culture. The decade also left unresolved questions that continue into our } \\ \text { own time. Course topics include the Cold War, civil rights, the Great Society, the Vietnam War, } \\ \text { science and technology, and shifting politics. The course examines the complexity, ideology, } \\ \text { and legacy of the 1960s through study of primary and secondary sources, film, music, } \\ \text { literature, and students' presentation of their own research. }\end{array} \\ \hline \text { HIS314C-H } & \begin{array}{l}\text { The First World War and the Modern World } \\ \text { (SPRING Semester; Offered even numbered years - 0.5 units) }\end{array} \\ \text { This one-semester elective course requires no prerequisites and is open to juniors and } \\ \text { seniors. The class will introduce students to one of the defining moments of the modern era, } \\ \text { The First World War. Throughout the semester, students will be exposed to the political, social, } \\ \text { cultural, and economic issues that influenced, thrived or died during, or were born from this } \\ \text { global experience. This class will pay special attention to how European states used colonial } \\ \text { resources, how the United States entered and experienced an ongoing global conflict, and } \\ \text { how the war was remembered and interpreted. A final project is required. }\end{array}\right\}$

Mathematics

Precalculus Courses

MAT101-H	Essentials for Calculus (A Full Year Course - 1.0 unit) This course meets four days each week and will provide a directed approach to prepare students for calculus. Topics covered will include coordinate geometry, rules of exponents, factoring, logarithmic and exponential functions, and an introduction to trigonometry.
MAT102-H	Foundations 1 for Calculus (FALL Semester - 0.5 unit) The first course of a two-semester sequence that meets four days each week and is designed to prepare students for the study of calculus. Topics include linear functions, polynomial functions, rational functions, exponential functions, logarithmic functions, function composition and transformations.
MAT103-H	Foundations 2 for Calculus (SPRING Semester - 0.5 unit) This is the second course of a two-semester sequence that meets four days each week. Topics include trigonometry, parametric and polar equations, and partial fractions. PREREQ: MAT102
MAT111-H	Concepts 1 for Calculus (FALL Semester - 0.5 unit) The first course of a two-semester sequence that meets three days each week and is designed to prepare students for the study of calculus. Topics include linear functions, polynomial functions, rational functions, exponential functions, logarithmic functions, function composition and transformations.
MAT112-H	Concepts 2 for Calculus (SPRING Semester - 0.5 unit) This is the second course of a two-semester sequence that meets three days periods each week. Topics include trigonometry, parametric and polar equations, and partial fractions. PREREQ: MAT111

Calculus Courses

MAT200-H	Calculus with Applications (A Full Year Course - 1.0 unit) This is an introductory course in differential and integral calculus but is not designed to prepare students for either of the AP Calculus exams. The course examines limits including L'Hôpital's Rule, as well as derivatives and their applications during the Fall semester. In the Spring semester, Riemann sums, definite and indefinite integrals, the Fundamental Theorem of Calculus, integration by substitution, and applications such as area and volume are covered. This course is open to seniors only. PREREQ: MAT 101, MAT103 or MAT112
MAT230-H	Prep for DE Calculus I (FALL Semester - 0.5 unit) The first course of a two-semester sequence that meets three days each week and is designed to cover the topics in a Calculus 1 course. Topics covered over the fall and spring semester include limits and continuity, derivatives, max-min theory, optimization and related rates, the Mean Value Theorem and Rolle's Theorem, L'Hôpital's Rule, and antiderivatives. Other topics include Riemann sums, the definite integral, the Fundamental Theorem of Calculus, and u- substitution. Integral calculus will also focus on the applications of area and volume. Students

	enrolled in this class are expected to complete the spring semester MAT 231 class to fulfill their calculus graduation requirement. PREREQ: Placement by the math department.
MAT231-DE (Dual Credit with Coker)	Calculus I (SPRING Semester - 0.5 unit) This is the second course of a two-semester sequence that meets three days each week. The topics covered in this course are listed in the MAT230 course description. PREREQ: MAT230
MAT231-DE	Calculus I (FALL Semester - 0.5 unit) (Dual Credit with Coker)
The first course of a two-semester sequence that meets four days each week. Topics include limits and continuity, derivatives, max-min theory, optimization and related rates, the Mean Value Theorem and Rolle's Theorem, L'Hôpital's Rule, and antiderivatives. Other topics include Riemann sums, the definite integral, the Fundamental Theorem of Calculus, and u- substitution. Integral calculus will also focus on the applications of area and volume. Students enrolled in this class are expected to take MAT 232 in the spring semester to complete the GSSM graduation requirement. PREREQ: MAT 101, MAT103, MAT112 or placement by the math department.	
MAT232-DE (Dual Credit with Coker)	Calculus II (SPRING Semester - 0.5 unit) This is the second course of a two-semester sequence that meets four days each week. This course covers areas of regions bounded by polar graphs, the calculus of parametric equations, integration by parts, partial fractions, trigonometric substitution, improper integrals, and arc length. Other topics include series and sequences, tests of convergence, absolute and conditional convergence, power series, and Taylor and Maclaurin series. PREREQ: Fall semester MAT231

Upper-Level Math Electives Offered Every School Year

MAT232-DE	
(Dual Credit	
with Coker)	Calculus II (FALL Semester-0.5 unit) This course meets three days a week and is intended for students who completed the MAT230/231 sequence as juniors or have completed AP Calculus AB. This course covers areas of regions bounded by polar graphs, the calculus of parametric equations, integration by parts, partial fractions, trigonometric substitution, improper integrals, and arc length. Other topics include series and sequences, tests of convergence, absolute and conditional convergence, power series, and Taylor and Maclaurin series. PREREQ: Spring semester MAT231 or placement by the math department.
MAT304-AP (AP Stat) Probability and Statistics (FALL Semester - 0.5 unit) This is an introductory course in probability and statistics. Topics include exploratory data analysis, regression \& correlation, experimental design, probability, and random variables. This is the first course of a two-semester sequence that prepares students for the AP Statistics exam. COREQ: Must have completed Ca/culus or be taking Calculus to enroll. MAT305-AP (AP Stat) Applied Statistics (SPRING Semester - 0.5 unit) This course focuses on inferential statistics. Topics include sampling distributions, confidence intervals and hypothesis testing for both means and proportions involving one-sample and two-sample studies. Other topics include inference on regression and chi-square tests. The MAT304/305 sequence prepares students for the AP Statistics exam. PREREQ: MAT304	

Upper Level Math Electives Typically Offered in Even Numbered School Years

MAT301 above AP or DC	Linear Algebra (FALL Semester; Offered even numbered years - 0.5 unit) This course includes solving systems by matrix methods, matrix operations, matrix algebra, determinants, Cramer's rule, vector algebra, the dot and cross products used in projections and geometric applications, lines and planes in 3-space, vector spaces, linear independence, linear transformations, eigenvalues, and eigenvectors. PREREQ: Completion of MAT231 or MAT232 or permission of instructor.
MAT302 above AP or DC	Abstract Algebra (SPRING Semester; Offered odd numbered years- 0.5 unit) This is an introductory course to abstract algebra and will cover sets, groups, equivalence relations, rings and fields with an emphasis on group theory. Students will learn the basics of writing a mathematical proof. PREREQ: Completion of MAT231 or MAT232 or permission of instructor
MAT312 above AP or DC	Ordinary Differential Equations (SPRING Semester; Offered odd numbered years - 0.5 unit) This course includes the study of first order differential equations beginning with separable equations and their applications, exact equations with integrating factors, and homogeneous equations. Also investigated are second order linear equations, including homogeneous equations with constant coefficients and non-homogeneous equations solved by using the method of undetermined coefficients, the method of variation of parameters, Laplace transforms, and power series solutions. PREREQ: Completion of MAT231 or MAT232 or permission of instructor.

Upper Level Math Electives Typically Offered in Odd Numbered School Years

MAT306 above AP or DC	Multivariable Calculus (SPRING Semester; Offered even numbered years- 0.5 unit) This course examines the calculus of real functions of two or more variables. Differential calculus topics include continuity, directional derivatives, tangent planes, and max-min theory. Integral calculus topics include double integrals in the Cartesian and polar coordinate systems, surface area, and triple integrals in the Cartesian, cylindrical, and spherical coordinate systems. Topics in curvilinear motion including velocity, acceleration, and curvature are also covered. PREREQ: Completion of MAT232 or permission of instructor.
MAT307 above AP or DC	Discrete Structures (FALL Semester; Offered odd numbered years - 0.5 unit) This course is a survey of logic and set theory. Topics include propositional and predicate logic, the algebra of sets including mappings, relations and functions, counting principles and probability, and the introduction of the concept of the mathematical proof including induction. PREREQ: Completion of MAT231 or MAT232 or permission of instructor.
MAT310 above AP or DC	Number Theory (SPRING Semester; Offered even numbered years - 0.5 unit) This course covers fundamental principles of number theory, including primes and composites, divisors and multiples, divisibility, and number bases. Other topics include calculations with modular arithmetic, linear and quadratic congruences, arithmetic involving Legendre symbols, Fermat's little theorem and its generalization by Euler, Pythagorean triples, primitive roots and indices, systems of linear congruences, and the Chinese Remainder Theorem. Applications that will be discussed include public key cryptography and the RSA algorithm. PREREQ: Completion of MAT231 or MAT232 or permission of instructor.

Music

$\left.\begin{array}{|l|l|}\hline \text { OMUS110C-H } & \begin{array}{l}\text { Chamber Orchestra 1 (FALL/SPRING Semester - 0.5 unit) } \\ \text { The Chamber Orchestra course will provide students with the opportunity to commit to } \\ \text { performance growth and development on their instruments as ensemble performers. } \\ \text { Operating in a focused, high energy learning environment, we will set monthly goals that will } \\ \text { encourage positive and consistent motivation. The orchestra will perform for several campus } \\ \text { and community events, festivals, and will perform 2-3 concerts per year. A variety of orchestral } \\ \text { literature that will be studied and performed includes music from the Baroque, Classical, } \\ \text { Romantic and Contemporary periods, as well as modern, multi-cultural, and pops } \\ \text { compositions. Orchestra members will have the opportunity to participate in the SC Region } \\ \text { and All-State orchestras under the sponsorship of Mrs. Averill. Students may also continue } \\ \text { private lessons from their private instructors via Zoom or Skype or may pursue private lessons } \\ \text { from local string studios. } \\ \text { PREREQ: Students must be able to read music well and must be able to proficiently play an } \\ \text { orchestral string instrument, woodwind instrument, brass instrument, or percussion. }\end{array} \\ \hline \text { 0MUS111C-H } & \begin{array}{l}\text { Chamber Orchestra 2 (FALL/SPRING Semester - 0.5 unit) } \\ \text { Chamber Orchestra 2 will provide students with the opportunity to commit to performance } \\ \text { growth and development on their instruments as ensemble performers. Advanced ensemble } \\ \text { students will be able to demonstrate mastery in musicianship including, but not limited to: } \\ \text { tone quality, intonation, rhythmic accuracy, and sight reading. In addition to playing orchestral } \\ \text { literature, emphasis is placed on solo and chamber ensemble performance skills. Operating in } \\ \text { a focused, high energy learning environment, we will set monthly goals that will encourage } \\ \text { positive and consistent motivation. The orchestra will perform for several campus and } \\ \text { community events, festivals, and will perform 2-3 concerts per year. A variety of orchestral }\end{array} \\ \text { literature that will be studied and performed includes music from the Baroque, Classical, } \\ \text { Romantic and Contemporary periods, as well as modern, multi-cultural, and pops } \\ \text { compositions. Orchestra members will have the opportunity to participate in the SC Region } \\ \text { and All-State orchestras under the sponsorship of Mrs. Averill. Students may also continue } \\ \text { private lessons from their private instructors via Zoom or Skype or may pursue private lessons } \\ \text { from local string studios. PREREQ: MUS110 }\end{array}\right\}$

	under the sponsorship of Mrs. Averill. Students may also continue private lessons from their private instructors via Zoom or Skype or may pursue private lessons from local string studios. PREREQ: MUS111
OMUS113C-H	Advanced Chamber Orchestra 4 (FALL/SPRING Semester - 0.5 unit) Chamber Orchestra 4 is a continuation of Chamber Orchestra 1, 2, and 3, for students planning to continue their musical studies during the spring semester of their senior year. In addition to orchestral repertoire, students will have the opportunity to study advanced solo literature and pedagogies that improve advanced skills on their instruments. Grade 6 is the maximum difficulty level of orchestral repertoire for this course. Advanced ensemble students will be able to demonstrate mastery in musicianship including, but not limited to: tone quality, intonation, rhythmic accuracy, and sight reading. In addition to playing orchestral literature, emphasis is placed on solo and chamber ensemble performance skills. Operating in a focused, high energy learning environment, we will set monthly goals that will encourage positive and consistent motivation. The orchestra will perform for several campus and community events, festivals, and will perform 2-3 concerts per year. A variety of orchestral literature that will be studied and performed includes music from the Baroque, Classical, Romantic and Contemporary periods, as well as modern, multi-cultural, and pops compositions. Orchestra members will have the opportunity to participate in the SC Region and All-State orchestras under the sponsorship of Mrs. Averill. Students may also continue private lessons from their private instructors via Zoom or Skype or may pursue private lessons from local string studios. PREREQ: MUS112
OMUS120C-H	Concert Choir 1 (FALL/SPRING Semester - 0.5 unit) The GSSM Concert Choir is open to all students who have previous experience in choir. The Concert Choir program offers opportunities for students to grow and develop their vocal skills while studying music of various cultures, languages, and eclectic literature of western music. Through using different warm-up methods, effective rehearsal strategies, and integrating music theory into sight-singing and ear training, students' musical literacy will greatly improve, resulting to a well-developed choir with a strong characteristic and mature sound. During their membership in the concert choir, students will have several performance opportunities for the school and community. Students will also be eligible to audition for Region and All-State Choir clinics during the spring semester. PREREQ: The student needs to have a well-trained ear, a strong and confident voice, and proficient music reading skills to be successful in this ensemble.
OMUS121C-H	Concert Choir 2 (FALL/SPRING Semester - 0.5 unit) The Concert Choir 2 is open to all students who have previous experience in choir. The program offers opportunities for students to grow and develop their vocal skills while studying music of various cultures, languages, and eclectic literature of western music. Specific advanced fundamentals include, but not limited to: music notation, tone, dynamic variance, vocal production, body alignment, proper breathing, resonance, diction, blend, balance, ear training, musical interpretation and analytical preparation of a piece. During their membership in the concert choir, students will have several performance opportunities for the school and community. Students will also be eligible to audition for Region and All-State Choir clinics. PREREQ: MUS120

$\left.\begin{array}{|l|l|}\hline \text { OMUS122C-H } & \begin{array}{l}\text { Advanced Concert Choir 3 (FALL/SPRING Semester - 0.5 unit) } \\ \text { The Concert Choir } 3 \text { is a continuation of Concert Choir } 1 \text { and 2, for students planning to } \\ \text { continue their musical studies during the fall semester of their senior year. In addition to } \\ \text { choral repertoire, students will have the opportunity to study advanced solo literature and } \\ \text { pedagogies that improve advanced vocal skills. Grade } 5 \text { is the maximum difficulty level of } \\ \text { choral repertoire for this course. The program offers opportunities for students to grow and } \\ \text { develop their vocal skills while studying music of various cultures, languages, and eclectic } \\ \text { literature of western music. Specific advanced fundamentals include, but not limited to: music } \\ \text { notation, tone, dynamic variance, vocal production, body alignment, proper breathing, } \\ \text { resonance, diction, blend, balance, ear training, musical interpretation and analytical } \\ \text { preparation of a piece. During their membership in the concert choir, students will have } \\ \text { several performance opportunities for the school and community. Students will also be } \\ \text { eligible to audition for Region and All-State Choir clinics. PREREQ: MUS121 }\end{array} \\ \hline \text { OMUS123C-H } & \begin{array}{l}\text { Advanced Concert Choir 4 (FALL/SPRING Semester - 0.5 unit) } \\ \text { The Concert Choir 4 is a continuation of Concert Choir 1, 2, and 3, for students planning to }\end{array} \\ \text { continue their musical studies during the spring semester of their senior year. In addition to } \\ \text { choral repertoire, students will have the opportunity to study advanced solo literature and } \\ \text { pedagogies that improve advanced vocal skills. Grade } 6 \text { is the maximum difficulty level of } \\ \text { choral repertoire for this course. The program offers opportunities for students to grow and } \\ \text { develop their vocal skills while studying music of various cultures, languages, and eclectic } \\ \text { literature of western music. Specific advanced fundamentals include, but not limited to: music }\end{array}\right\}$

Physics

PHY161-DE	
(Dual Credit	
with FMU)	General Physics I (FALL Semester - 0.5 unit) An algebra-based introduction to Newtonian mechanics. Topics include 1D and 2D motion, Newton's laws of motion, gravity, work, energy, heat, momentum, and rotational motion.
4 hours of	
college credit	Students will develop analytical thinking, reasoning, and scientific critical thinking skills through in-class activities, weekly experiments, and regular homework assignments. This course is dual enrolled with Francis Marion University and will be taught by GSSM faculty. Includes a 2-hour weekly lab. COREQ: Initial math placement in MAT111-H or above. See "College Credit Hours for GSSM Courses."

PHY162-DE (Dual Credit with FMU) 4 hours of college credit	General Physics II (SPRING Semester - 0.5 unit) An algebra-based continuation of Newtonian mechanics and introduction to waves, electricity, and magnetism. Topics include oscillations, mechanical waves, sound, electrostatics, DC circuits, magnetism, and optics. Students will develop analytical thinking, reasoning, and scientific critical thinking skills through in-class activities, weekly experiments, and regular homework assignments. This course is dual enrolled with Francis Marion University and will be taught by GSSM faculty. Includes a 2-hour weekly lab. PREREQ: PHY161-E or PHY201-AP. See "College Credit Hours for GSSM Courses."
PHY201-AP (AP Physics C)	Calculus-Based Physics I (AP Physics C: Mechanics) (FALL Semester - 0.5 unit) An extension of the generally accessible topics covered in General Physics but with the use of basic integral and differential calculus. Topics include particle kinematics and dynamics; Newton's laws of motion, including circular motion; work; kinetic energy; potential energy; energy conservation; power; linear momentum, its conservation, and impulse of particles and systems of particles; rotational Newtonian kinematics and dynamics of rigid bodies; angular momentum and its conservation; equilibrium of a rigid body; gravitation; and oscillation. Includes a 2-hour weekly lab. COREQ: MAT230 Prep for DE Calculus or above.
PHY202-AP (AP Physics C)	Calculus-Based Physics II (AP Physics C: Electricity \& Magnetism) (SPRING Semester - 0.5 unit) Primary topics include electric charge; electric field; Gauss's Law for Electricity; potential; capacitance and dielectrics; conductors and insulators; current; resistance; emf; DC circuits; magnetic field; Gauss's Law for Magnetism; magnetic forces; sources of magnetic field; displacement current and Ampere's Law; electromagnetic induction and Faraday's Law; inductance; and electromagnetism as synthesized in Maxwell's equations. Includes a 2-hour weekly lab. PREREQ: PHY201-AP. COREQ: MAT231 Calculus I or above.
PHY211-H	Physics in the Arts (FALL Semester - 0.5 unit) This course studies physical phenomena found in music and the visual arts; also known as the scientific fields of acoustics and optics. Topics covered in this course include light waves, color mixing, lenses, mirrors, photography, sound waves, sound perception, musical scales, and musical instruments. These topics will be further studied through observation and experimentation during the weekly lab. Includes a 2-hour weekly lab. COREQ: Initial math placement in MAT111-H or above, or permission of instructor. Does not count towards GSSM's lab science graduation requirement.
PHY212-H	Physics of Sports (SPRING Semester - 0.5 unit) This course examines applications of physics principles in sports such as baseball, basketball, football, soccer, volleyball, golf, tennis, bowling, gymnastics, track and field, etc. Concepts of kinematics, force, energy, power, momentum, rotational motion, and fluid dynamics will be used to understand the motion and spin of balls that have been thrown/kicked/hit, the sliding and rolling motion of objects on various surfaces, historical engineering advancements in sporting equipment, etc. These same physics concepts will also be applied to the human body to understand the mechanics and anatomy involved in throwing, swinging, running, jumping, spinning, somersaulting, etc. Includes a 2-hour weekly lab. PREREQ: PHY 161, or PHY 201, or physics from your previous high school. Does not count towards GSSM's lab science graduation requirement.

PHY203 above AP or DC	Fluids, Thermodynamics, and Optics (SPRING Semester -- 0.5 unit) This course is a third semester of physics meant to complement the 161/162-E or 201/202-AP classes. Students will study some of the classical physics topics not emphasized in those courses, namely, fluid mechanics, thermodynamics, and optics. Other topics may include high energy physics and cosmology as time permits. This course also includes a weekly laboratory experience. PREREQ: PHY162 or PHY202-AP or completion of AP Physics.
PHY301 above AP or DC	Modern Physics (FALL Semester - 0.5 unit) This course is a continuation of PHY 161/162 or PHY 201/202. It focuses on the implications and applications of the topics covered in these courses beyond the Newtonian scale and introduces some of the extraordinary developments that irrevocably altered our understanding of physics. Following a historical outline, the topics include special and general relativity, atomic structure, quantum mechanics, and nuclear and particle physics. Although the course is geared to the mathematical ability of the class, some calculus should be expected. Includes a 2-hour weeklylab. PREREQ: PHY162 or PHY202-AP or completion of AP Physics.

Psychology

\(\left.$$
\begin{array}{|l|l|}\hline \text { PSY301-AP } & \begin{array}{l}\text { AP Psychology (SPRING Semester - 0.5 unit) } \\
\text { This class can be taken as a social studies 0.5 credit or an elective. This class will be a basic } \\
\text { introduction to the discipline of psychology in the 19th and 20th centuries. Major figures in the } \\
\text { development of theories and the evolution of those theories through the years will be } \\
\text { discussed. Some case studies may also be used to more effectively focus on the different } \\
\text { directions taken by modern psychology. Taught in one 3-hour class session each week. }\end{array} \\
\hline \text { SCI303-H } & \begin{array}{l}\text { Social Science Research Methods (FALL Semester - 0.5 unit) } \\
\text { This course is intended to introduce students to the research process. Focus will be on } \\
\text { quantitative social science research logic and critical thinking. Research terms will be } \\
\text { explained and applied; as students engage in the research process through the associated } \\
\text { activities for designing and constructing a project, and developing writing skills, while } \\
\text { incorporating principles of research ethics. Students will construct an effective research } \\
\text { proposal which may serve as the launching point for a study they may execute in Research in } \\
\text { Quantitative Social Science. } \\
\text { Special Approval: Instructor and Director of Research \& Inquiry }\end{array} \\
\hline \text { RES-TBD } & \begin{array}{l}\text { Research in Quantitative Social Science (SPRING Semester - 0.5 unit) } \\
\text { Students will advance their study of social science research methods through execution of a } \\
\text { research project of their own design. The course offers a hands-on opportunity for students' } \\
\text { data collection, analysis, and interpretation in keeping with a solid grounding in relevant social }\end{array}
$$

science literature. In addition to a review of introductory research concepts, students will

engage in application of descriptive, relational, and inferential statistics to their original data.

The main written product for this course will result from the implementation of the research

project proposed in Introduction to Social Science Research - in accordance with related\end{array}\right\}\)| American Psychological Association (APA) Version 7 style. This course fulfills the Research \&Inquiry Requirement.
 Prerequisite: SCI303-H
 Special Category: Fulfills GSSM Research \& Inquiry Requirement |
| :--- |

Research \& Inquiry

RES401-H	Mentored Summer Research \& Inquiry (SUMMER/FALL - 0.5 unit) Students will conduct a six-week, research \& inquiry project under the guidance of a research mentor with experience \& expertise in their field. Students are responsible for meeting any requirements of the project site (e.g., documentation, participating in a poster presentation, etc.). The mentor and project must be approved or assigned by GSSM. Students prepare their GSSM Research \& Inquiry Portfolio prior to the start of the Fall Semester. During the Fall semester, students work at a seminar level with a GSSM Research Advisor to complete preparation to present at the GSSM Annual Research Colloquium. This presentation is required to receive credit. The course does not count toward course load for the Fall Semester of the senior year. This course fulfills the Research and Inquiry Requirement at GSSM. Prerequisite: LLS107 Special Category: Fulfills GSSM Research \& Inquiry Requirement Does not count toward course load for the Fall Semester of the senior year.
RES410-H	Advanced Research \& Inquiry Communication (FALL - 0.5 unit) Students will focus on communication of their Research \& Inquiry Project from Mentored Summer Research \& Inquiry (RES401) gaining experience in multiple modes of research communication to a variety of audiences. Students will produce a research \& inquiry portfolio culminating in a full-length technical research paper suitable for submission to a regional, national, or international research competition and presentation of the project at Annual Research Colloquium. Corequisite: RES401-H
CHE401-H	Research in Microwave Spectroscopy (FALL Semester - 0.5 unit) See course listing in Chemistry for full description.
Prerequisite: CHE100-H, CHE201-AP, or CHE203	
Special Category: Fulfills GSSM Research \& Inquiry Requirement	
Special Approval: Instructor and Director of Research \& Inquiry	

	Special Approval: Instructor and Director of Research \& Inquiry
RES-TBD	Research in Quantitative Social Science (SPRING Semester - 0.5 unit) See course listing in Psychology for full description. Prerequisite: SCI303-H Special Category: Fulfills GSSM Research \& Inquiry Requirement Special Approval: Instructor and Director of Research \& Inquiry
RES405-H above AP or DC	Research in Restoration Ecology (SPRING Semester - 0.5 unit) See course listing in Biology for full description. Priority enrollment will be given to seniors. Prerequisite: SCI301 Special Category: Fulfills GSSM Research \& Inquiry Requirement Special Approval: Instructor and Director of Research \& Inquiry
RES406-H	Research in Hydroponics (FALL/SPRING Semester - 0.5 unit) See course listing in Biology for full description. Prerequisite: One year of previous high school biology and chemistry or concurrent enrollment in BIO 202 and CHE 100/CHE 201/CHE 203 Special Category: Fulfills GSSM Research \& Inquiry Requirement Special Approval: Instructor and Director of Research \& Inquiry
RES407C above AP or DC	Research in Soil Microbiota (SPRING Semester - 0.5 unit) See course listing in Biology for full description. Includes a 2-hour weekly lab. Prerequisite: BIO201-AP and BIO202-AP or completion of AP Biology. Special Category: Fulfills GSSM Research \& Inquiry Requirement Special Approval: Instructor and Director of Research \& Inquiry

Spanish

SPA201-H	Spanish II (A Full Year Course - 1.0 unit) SPAN II is a fast-paced introductory language course intended for students with little or no knowledge of Spanish. Informed by the ACTFL Proficiency Guidelines, this course uses a communicative methodology in an effort to promote the five 'Cs' of second language acquisition: Communication, Cultures, Connections, Comparisons and Communities. By the end of the academic year, students should have a greater understanding of cultural and historical topics from a variety of countries and regions in the Spanish-speaking world. Students should expect to discuss basic topics and cultural events in the present, past, and future; describe people and places; and talk about daily activities. In addition, through frequent attention to a variety of artistic expressions (music, painting, literature, folklore and performance), students will enhance their knowledge of the Spanish speaking world and increase their ability to formulate coherent and critical thoughts in the target language. PREREQ: Spanish / or permission of instructor.
SPA301-H	Spanish III (A Full Year Course - 1.0 unit) SPAN III is an interactive, proficiency-oriented and student-centered course that builds on the language proficiency and cultural knowledge/awareness acquired in Spanish II. Informed by the ACTFL Proficiency Guidelines, this course uses a communicative methodology in an effort to promote the five 'Cs' of second language acquisition: Communication, Cultures,

$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { Connections, Comparisons and Communities. Students will develop the tools necessary to } \\ \text { execute some of the following communicative tasks in the target language: discuss events in } \\ \text { the past, present and future; talk about hypothetical and conditional situations; and discuss } \\ \text { topics of daily life (current events, the environment, urban life, travel, job market, } \\ \text { communications, etc.). In addition, through frequent attention to a variety of artistic } \\ \text { expressions (music, painting, literature, film, and performance), students will enhance their } \\ \text { knowledge of the Spanish speaking world and increase their ability to formulate coherent and } \\ \text { critical thoughts in the target language. PREREQ: Spanish I/ or permission of instructor. }\end{array} \\ \hline \text { SPA401-H } & \begin{array}{l}\text { Spanish IV (A Full Year Course - 1.0 unit) } \\ \text { SPAN IV is an interactive, proficiency-oriented and student-centered course, designed to build } \\ \text { on the language proficiency and cultural knowledge/awareness acquired in Spanish III. In this } \\ \text { course, students will work on the five skills necessary to develop and deliver effective } \\ \text { communication in Spanish at a higher, more sophisticated level of performance. Students } \\ \text { will focus on enhancing their ability to execute complex communicative tasks in the target }\end{array} \\ \text { language: discuss events in the past, present and future; talk about hypothetical and } \\ \text { conditional situations; and analyze, discuss, and reflect on abstract topics. In addition, through } \\ \text { frequent analysis of literary and artistic works intended for native audiences (such as plays, } \\ \text { poetry, short stories, films, newspaper articles, podcasts, etc.) students will increase their } \\ \text { knowledge of the Spanish speaking world and improve their ability to formulate coherent and } \\ \text { critical thoughts about important global issues in the target language. After successful }\end{array}\right\}$

	written assignments are in the target language. (Spanish). PREREQ: SPA601-AP Spanish or permission of instructor.
SPA703 above AP or DC	Topics in Hispanic Culture and Linguistics (SPRING Semester - 0.5 unit) This course studies Hispanic Culture and/or Linguistics as a tool to improve listening, reading, and speaking comprehension skills in Spanish and to promote discussion in the target language. The course focuses on two main areas: Culture and/or Linguistics. The Culture topic focuses on globalization, marginalized communities, national identity, political conflicts in Central and South America, and the role of art in the creation of collective memory. The Linguistics topic focuses on themes central to the study of linguistics such as introductory Spanish linguistics, first and second language acquisition, dialectal variation in Spanish, and the development of Spanish from a historical perspective. This course covers a varied selection of cultural objects, genres and/or regional diversity from the Spanish speaking world and therefore exposes students to a multiplicity of linguistic registers, colloquial expressions, and accents. In addition to the improvement of language skills, the topics will promote cultural awareness by exposing students to unique and actual cultural objects, historical processes, and issues and challenges facing global citizens. Class discussions and secondary readings focus on both formal elements of linguistics and culture, as well as their sociopolitical, historical, and cultural contexts. Classroom discussions and written assignments are in the target language. (Spanish). PREREQ: SPA601-AP Spanish or permission of instructor

Visual Arts

ART110-H	Ceramics I (FALL/SPRING Semester - 0.5 unit) This course provides beginning instruction in ceramics typically explored at the undergraduate university level. Ceramics I serves as an introduction to clay, glaze, and kiln processes with a general survey of functional and sculptural ceramics. During this course, students explore pinch, slab, coil, and sculptural built ceramic processes. In addition, students learn surface techniques. Students learn about material concerns regarding clay, such as time management, steps of production, and safe handling practices.
ART111-H	Ceramics II (FALL/SPRING Semester - 0.5 unit) This course provides continuing instruction in ceramics typically explored at the undergraduate university level. Ceramics II serves as an opportunity for students to create a portfolio of ceramic artworks. Students learn about contemporary and historical artists through the exploration of their ideas and methods. Students are required to present their work \& ideas to the class during the semester. Additionally, students are required to create a project proposal outlining their goals, ideas, artists/scholars of influence, and plan of action. Prerequisites: ART 110-H
ART120-H	Painting I (FALL/SPRING Semester - 0.5 unit) This course provides beginning instruction to oil painting typically explored at the undergraduate university level. The mechanics of painting including composition, light, and

$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { color theory are applied through observational practices. Students learn about contemporary } \\ \text { and historical artists through the exploration of their ideas and methods. }\end{array} \\ \hline \text { ART121-H } & \begin{array}{l}\text { Painting II (FALL/SPRING Semester - 0.5 unit) } \\ \text { This course provides continuing instruction in painting typically explored at the undergraduate } \\ \text { university level. Students continue to paint from observational practices while learning to use } \\ \text { conceptual practices, methods, and theories within their artwork. Students learn about } \\ \text { contemporary and historical artists through the exploration of their ideas and methods. } \\ \text { Students are required to present their work \& ideas to the class during the semester. } \\ \text { Additionally, students are required to create a project proposal outlining their goals, ideas, } \\ \text { artists/scholars of influence, and plan of action. Prerequisites: ART 120-H }\end{array} \\ \hline \text { ART201-H } & \begin{array}{l}\text { Advanced Studio Art 1 (Fall and Spring Semester - 0.5 unit) } \\ \text { This course provides upper-level instruction in Studio Art typically explored at the } \\ \text { undergraduate university level. Advanced Studio Art offers students the opportunity to create } \\ \text { a focused body of artwork while working closely with peers that have similar goals. This course } \\ \text { requires that students think critically, analytically, creatively, and conceptually about their own } \\ \text { artwork. Prerequisites: One year (1 Credit) of Studio or Visual Art, or by instructor permission. }\end{array} \\ \hline \text { ART 202-H } & \begin{array}{l}\text { Advanced Studio Art 2 (Fall \& Spring Semester - .05 unit) } \\ \text { This is the second course in the Advanced Studio Art sequence. This course provides upper- } \\ \text { level instruction in Studio Art typically explored at the undergraduate university level. }\end{array} \\ \text { Advanced Studio Art offers students the opportunity to create a focused body of artwork while } \\ \text { working closely with peers that have similar goals. This course requires that students think } \\ \text { critically, analytically, creatively, and conceptually about their own artwork. Prerequisites: ART } \\ \text { 201-H Advanced Studio Art or by instructor permission. }\end{array}\right\}$
knowledge of the role art and artists have played in shaping and reflecting culture from the prehistorical era to the present moment, both globally and in a Euro-American context. They will learn to analyze and appreciate aesthetic qualities of both exemplary and representative works, placing those aesthetic qualities within the works' cultural context. The knowledge and skills gained from this course will foster confidence and curiosity, leading to increased empathy with a wider variety of cultures and histories. Students in this course should expect to analyze and appreciate art through print and digital reproductions, and through trips to local and regional museums. This course fulfills GSSM's fine arts requirement.

Junior Seminar Series

Note: Students are automatically registered for these seminars.

LLS101	Life and Leisure Skills (FALL and SPRING Semester, Graduation Requirement) This seminar is designed to provide juniors with the necessary skills for making the transition to residential living and to a school curriculum that is frequently intense. The course formally addresses many of the academic as well as emotional and social demands that are placed on students in their new environment. It provides them with an arena where positive life skills are encouraged and fostered. This seminar meets once a week.
LLS102	Academic Transition (FALL Semester, Graduation Requirement) This seminar is designed to assist students with the academic transition to GSSM, so that you can take full advantage of the resources and opportunities available at this wonderful school. We will work together so that you have the opportunity to develop the skills and mindset necessary to thrive in the fast-paced and challenging GSSM academic environment. While we recognize that you have been selected to attend GSSM because of your academic excellence thus far, experience has taught us that additional support for the entering class is a necessary and welcome addition to students' schedules. This seminar meets once a week.
LLS103	College Planning Seminar I (SPRING Semester, Junior Year, Graduation Requirement) The College Planning Seminar I course is designed to teach students how to navigate both the college search and college application processes. The course will emphasize the importance of self-awareness and reflection in the process. Students will also learn how to identify college/universities that match what they are looking to gain in a collegiate experience. The tools and resources shared in the course will allow students to have a thoughtful and guided college search experience. This seminar meets once a week.
LLS105	Everyday Survival Skills (SPRING Semester for four weeks, Junior Year, Graduation Requirement) Life is a contact event and can be stressful. Having an understanding of that and some basic skills can help you overcome stress and survive contact. While it is our hope that you will never be in danger or need to use these survival skills, we want you to have them. This 4-week seminar will provide practical hands-on exercises and online learning. Students will be exposed to a) situational awareness training, b) emergency first aid procedures, c) self-defense

	strategies and methods, and d) physical and mental stress reduction and personal focus techniques.
LLS106	Public Speaking (SPRING Semester for four weeks, Junior Year, Graduation Requirement) This 4-week seminar will provide a brief introduction to the art and science of public speaking. Students should anticipate a fast-paced, hands-on experiential learning environment as we explore the classical roots of public speaking, the basic elements of a speech, various organizing strategies, managing speech anxiety, effective delivery, and persuasion. We will be crafting a variety of short speeches each day, so students will quickly and continually practice what is learned.
LLS107	Preparing for Research Experiences (SPRING Semester for four weeks, Junior Year, Graduation Requirement) This 4-week seminar series will provide an introduction to skills and concepts central to student research experiences and completing the GSSM Research \& Inquiry Portfolio. LLS106

Senior Seminar Series

Note: Students are automatically registered for this seminar.

LLS104	College Planning Seminar II (FALL Semester, Senior Year, Graduation Requirement) The College Planning Seminar II course continues the college application process for the fall of senior year. Students will confirm their college application list, complete college applications and essays, and submit requests to have official documents sent to colleges. Completion of financial aid forms (FAFSA and CSS Profile) will also be covered. This fall seminar focuses on time management skills, organizational skills, submission of college applications and communication with colleges as an applicant. The seminar meets once a week; students may be excused from attending once their applications have been submitted to colleges.

Section 2: Frequently Asked Questions

1. How many courses do I need each semester?

All students must have a minimum of 5 courses per semester. Many students take 6 courses per semester, and some take 7 or more. Juniors also take two one-hour seminar courses per semester, and seniors also take a one-hour seminar course during the fall semester. Students should work with their academic advisors to come up with the schedule that best meets their academic goals and abilities.
2. What if I want to take more than 5 courses in a semester?

Students may take a sixth course during a semester with approval of their advisor. Students may take a seventh course with the approval of their advisor in consultation with the Dean of Curriculum and Instruction. In general, only consider requesting more than 5 courses if you are earning 90 s or above in all current courses. When considering taking more courses, it is important to consider the demands of an additional course. It is very important for college admissions that you perform well in the courses you take. Taking more courses and not performing well in all courses is not advisable.
3. What science courses do I need?

It is important that you have a solid foundation in the core sciences: biology, chemistry, and physics. Therefore, you must take a full credit (one year) in each of these three sciences at the honors level or above to graduate from GSSM. Discuss with your advisor taking GSSM's foundational lab sciences in order to ensure a strong background in all three sciences.
4. Which chemistry course should I take, Principles of Chemistry, Dual Enrollment (DE) Chemistry, or AP Chemistry?
If you have not taken a high school chemistry class, you must take Principles of Chemistry. GSSM requires all students to take at least one chemistry course either at their previous school or at GSSM. Note that students who take Principles of Chemistry as a junior will be well-prepared to take DE or AP Chemistry as a senior if they choose to do so.
If you have taken chemistry before but feel you do not have a strong background, you should take Principles of Chemistry instead of DE or AP Chemistry if you choose to take a chemistry course. Principles will prepare you well for further (DE, AP, or college) courses in chemistry.
If you have taken chemistry before and feel you have a strong background, you may take DE or AP Chemistry, which are of similar rigor. If you choose DE Chemistry, a passing
grade will earn college credit that will likely transfer to any public South Carolina university and some private and out-of-state colleges and universities. If you choose AP Chemistry, a score of 3 or higher on the AP Chemistry Exam will provide you with college credit at many colleges and universities. Colleges and universities typically list the credits awarded for AP scores on their websites.
5. Which physics course should I take, General Physics (dual-enrolled) or AP Physics C? If you haven't taken a high school physics class, you can take either General Physics or AP Physics C to fulfill the GSSM graduation requirement. If you have already taken a high school physics class, you are welcome to continue your physics studies and earn college credit by taking either General Physics or AP Physics C. Because physics has a heavy math component, to take General Physics (algebra-based, dual-enrolled) you must be in MAT111-H or above, and to take AP Physics C (calculus-based), you must be in MAT230 Prep for DE Calculus 1 or above. Taking General Physics as a junior does not preclude you from also taking AP Physics C as a senior. General Physics or AP Physics C is required for physics electives PHY 203 and PHY 301.
6. Which math course should I take?

As is the case for all GSSM courses, the courses in mathematics are designed to teach mastery of the subject area. Based on our professional opinion and experience, we work to place students in the best course for their individual backgrounds. We want each student to take the course that will challenge them at an appropriate level. Recognizing that the mathematical ability of students varies greatly despite possibly having taken similar courses, we take proper placement very seriously. Once a student is at GSSM, we may see that they could and should be placed in a different level (higher or lower) class. Because we encourage students to challenge themselves and strive to reach their full potential in all academic areas, we will switch a student to a different mathematics class if we see that our initial placement was incorrect. The math department will reassess placements near the beginning of the semester, after the first major assessment, and once again at mid-term.

For Incoming Juniors

During the registration process, all rising juniors are asked to select the math courses, along with their other courses, that they want to take. During May, all rising juniors are given placement assessments, which are used in addition to their placement request, transcripts, PSAT/SAT math scores and previous grades in mathematics, to place them in the proper math courses.

For Rising Seniors

Math placement is determined by you and your current math instructor. After spring midterm grades are reported, you will meet with your math instructor to decide which math course is appropriate for you. Final semester grades will determine your ultimate placement. Placement is determined by the general guidelines below:

All GSSM students must complete 1.0 credit of calculus at the honors level or higher during high school. Students who took MATH 101, Math 102/103 or Math 111/112 as juniors will be placed into a calculus class as follows:

- For students currently enrolled in Math 101, a grade of 90 is needed for MAT 231 (Calculus I) and permission of the instructor is needed for MAT 231/232 (Calculus I and II).
- For students currently enrolled in MAT 102/103, a grade of 86 is needed for MAT 231 (Calculus I) and 93 for MAT 231/232 (Calculus I and II).
- For students currently enrolled in MAT 111/112, a grade of 80 is needed for MAT 231 (Calculus I) and 90 for MAT 231/232 (Calculus I and II).

7. Can you explain the different Pre-Calculus and calculus classes?

- Pre-Calculus: These courses are all pathways to prepare for calculus. Each of the following bullet points constitutes a single pre-calculus curriculum.
- MAT 101 (Essentials for Calculus, yearlong) is designed for students who have a weaker mathematical background. This course begins with a review of algebra topics to help fill i the gaps in students' mathematical backgrounds. The course prepares students for calculus. Meets 4 days a week.
- MAT 102 (Foundations 1 for Calculus, Fall) \& MAT 103 (Foundations 2 for Calculus, Spring) are designed to move at a pace that allows students additional time for extra practice on key problems related to the algebraic foundations of calculus. Meets 4 days a week.
- MAT 111 (Concepts 1 for Calculus, Fall) \& MAT 112 (Concepts 2 for Calculus, Spring) are designed to provide foundational instruction to prepare students for calculus and move at a faster pace than the Math 102/103 sequence. Meets 3 days a week.
- Calculus: These calculus sequences all count towards the calculus graduation requirement.
- MAT 200 (Calculus with Applications, yearlong) is a senior only class designed to move at a pace that allows additional time to practice fundamental problems in elementary calculus. Meets 3 days per week.
- MAT 230 (Fall) \& MAT 231 (Spring) (Calculus I) are designed to present more advanced problems and provide greater depth in the theoretical foundations of calculus than the Math 200 course. These two courses form a single calculus
sequence that provide students with college credit for a calculus I course. Meets 3 days per week.
- MAT 231 (Fall) \& MAT 232 (Spring) (Calculus I \& II) are designed to present more topics, more advanced problems, and greater depth than the MAT 230/231 sequence. Students completing this sequence of courses receive dual enrolled credit for Calculus I and II. Meets 4 days per week.

8. What English courses should I take?

The ability to write with clarity and precision is critical for success in all fields. Studying literature opens us up to new experiences, increases empathy and understanding, and develops critical and analytical thinking skills. For these reasons, GSSM requires all incoming juniors to take our two-semester rhetoric and composition course sequence, ENG111 and ENG112. Students must earn a C or higher in each of these courses in order to earn a GSSM diploma. ENG 111 and ENG 112 together count as one unit of high school English credit. They also earn students six hours of college writing credit, required at most colleges and universities in the United States.

For senior year, your choice of English courses will depend on how many total years of high school English you have completed prior to senior year. If you have completed 3 years of English, you will need to take the ENG250/252 course sequence to earn your 4th unit of English, thus fulfilling the South Carolina high school diploma requirements. ENG250/252 will earn you six additional hours of college English credit, which will typically count either towards core or elective requirements at most colleges and universities.

If you have completed 4 years of English prior to your senior year, you are highly encouraged to continue taking English your senior year. You may choose to take the ENG250/252 course sequence, or you may take one or more of the many electives offered by the English department.
9. Which computer science course should I take?

GSSM considers computer science to be an indispensable tool for almost every discipline. If you have not taken a computer science course, you may select one of these options to fulfill the SC graduation requirement:

- CSC101 Introduction to Computer Science (AP CS A) which is a one-semester course offered in the fall, followed by CSC102 Advanced Java Programming (AP CS A) which is offered in the spring to complete your AP exam preparation. Each semester earns 0.5 unit.
- CSC110 Computer Science 1: Python for Scientists which is a general-purpose object-oriented language that is used by many disciplines. This one-semester course earns 1.0 unit. This course is dual-enrolled.
- The sequence ENGIN102 Engineering Disciplines and Skills followed by ENGIN141 Computer Programming with MATLAB. MATLAB is a programming language tailored for engineering and science. Refer to the description in the engineering section of the course catalog. NOTE: Only ENGIN141 is dual-enrolled and counts as 1.0 unit of credit of computer science.
- CSC101 Introduction to Computer Science (AP CS A) (0.5 unit) followed by CSC160 Introduction to Computer Networking (0.5 unit) for a total of 1.0 unit of credit.
- CSC 160 Introduction to Computer Networking (0.5 unit) and CSC260

CyberSecurity Fundamentals (0.5 unit) for a total of 1.0 unit of credit. If you have taken a computer science course that fulfills the SC graduation requirements, you may enroll in a computer science elective course(s). Work with your academic advisor and the computer science department faculty to make sure you have completed the prerequisites for these courses.

10. Which engineering course should I take?

 The engineering program at GSSM offers introductory and advanced project-based courses. ENGIN205 Applications in Engineering Design is a good place to start if you have limited experience in engineering. For more advanced studies, consider ENGIN207 Engineering: Electronics, or ENGIN208 Engineering: Design Modeling course. We offer three dual-enrolled courses, ENGIN102 Engineering Disciplines and Skills, ENGIN141Computer Programming with MATLAB, and ENGIN208 Engineering Design Modeling course.ENGIN102 and ENGIN141 are the equivalent to the general engineering sequence at Clemson University, in which students learn how to apply Excel (in ENGIN102) and MATLAB (in ENGIN141) to analyze and solve engineering and science problems. ENGIN115, in which students learn how to 3D model in SolidWorks, is also required by some engineering departments at Clemson. Students choosing to attend Clemson may receive university credit for these courses. If you have the PLTW courses IED and POE, you are well-prepared to take any of the intermediate courses, ENGIN 102, ENGIN 105C, ENGIN 206, ENGIN 207, and ENGIN 208, as well as any of the introductory courses.
11.What is an independent study?

Independent study at GSSM is designed to provide additional opportunities for highly motivated students to pursue areas of their special interest. Please see the Other

Academic Information section "Independent Studies" for more information about how to register for an independent study course.
12.If there is more than one teacher for a course, can I select the teacher I want? Students cannot select instructors. It is important to learn how to learn in all situations and from different teaching styles. Learning from our diverse and talented instructors will prepare you for learning in the college setting and beyond.
13. Why does my schedule change sometimes during the year, especially between semesters?
In order to provide the best educational experience, we try to balance classes as best possible (i.e., a similar number of students in each section of a course). Since a number of our courses are taught in one semester and since we allow students to add and drop courses at the beginning of semesters, we sometimes need to rebalance classes for instructors at the beginning of each semester and sometimes after a few weeks into a semester.
14. How do I complete the research and inquiry graduation requirement? Completion of a GSSM-approved, mentored research and inquiry program is required for all students. Students complete the research and inquiry graduation requirement by taking and passing RES401 or a research and inquiry designated course. Most students complete this requirement through RES401 involving six weeks of mentored summer research in an external research group with which they are matched by GSSM, completion of a portfolio, and presentation at GSSM's Research Colloquium.

Enrollment in an on-campus, school-year research and inquiry designated course requires approval of the academic advisor, instructor, and Director of Research \& Inquiry on an RIDC form.
15. How does RES401 count in regard to the classes I take? Mentored Summer Research \& inquiry (RES401) does not count as one of your required 5 courses in the fall of your senior year but will show up on your fall schedule on Thursdays at 4PM because RES401 students will work at a seminar level with a GSSM research advisor to finish their research and inquiry portfolio before the Annual Research Colloquium. The final grade and credit for research is not awarded until the end of the fall semester.
16. What do I need to do if I have not met the physical education State graduation requirement prior to coming to GSSM?
The combination of your Life and Leisure seminar and working with the athletic department on a physical activity plan will meet the State PE requirement.
17. What do I do if I need a fine arts credit?

All GSSM visual arts, art history, music, and drama courses fulfill the fine arts requirement. If these courses do not fit into your academic program during your two years at GSSM, you can take fine-arts courses during the summer.
18. If a course is listed in the course catalog, will it definitely be offered? Ideally, yes. However, depending on student demand for the course, and what other courses faculty are teaching, some courses may not be offered each year. Because some courses have limits to enrollment, not all students who register for a course are guaranteed to be able to take it. Therefore, when signing up for courses, you should think about other elective courses you might want to take if your initial choices cannot be met.
19. How does the one-semester Gov/Econ (HIS 201) class at GSSM fit with State social studies requirements?
If you take the one-semester Gov/Econ course at GSSM, it satisfies both the government and economics State requirements, reducing the total State socialstudies requirement from 3 credits (US History - 1.0 credit, Government - 0.5 credit, Economics - 0.5 credit and one other Social Studies credit - 1.0 credit) to 2.5 credits total (US History - 1.0 credit, GSSM Gov/Econ - 0.5 credit and one other Social Studies credit - 1.0 credit). GSSM's one-semester Gov/Econ course may be offered on-campus or online during the fall and spring semesters, depending on instructor availability. It is offered online during the interim term for students taking on-campus courses. It is also offered online during the summer.
20. Do students and parents have access to grades through PowerSchool like they did in their previous high school?
GSSM is a high school that operates in many academic ways like a college. Our courses are on a college schedule; mastery of the subject is the goal; and student ownership of their academic success is promoted. We ask students to keep track of their grades throughout their courses. At any point during a course, students or parents can ask teachers about their grades. Ideally, students would know their grades based on the grades they have received, and the grade breakdown provided in the course syllabus. Since we are still a high school, mid-semester report cards and end of semester report cards are given to the students and sent home.
21.For which GSSM courses can I get college credit? GSSM has a dual-enrollment agreement with Coker University and Francis Marion University. Students receive Coker University or Francis Marion University credit for certain courses. See "College Credit Hours for GSSM Courses" for more information about dual enrollment.
22. Can I get credit at GSSM for courses I take over the summer?

Students should work with their academic advisors to decide whether to take summer courses. Incoming juniors typically do not take summer courses, except finearts courses. GSSM typically teaches some summer courses for rising seniors which fulfill graduation requirements. GSSM's one-semester government/economics class is usually taught online every summer. Rising seniors who have not met their government and economics requirement may take this course. Note that this course is also typically taught every semester and during interim (for students who are not traveling during interim). GSSM rising seniors may take up to 2 GSSM summer courses. Remember that most rising seniors will also be working on summer research during that summer. Incoming juniors may take courses to fulfill their finearts requirement. Students may take summer fine-arts courses at accredited schools (such as Virtual SC, local high schools, or technical colleges) that will provide GSSM a written transcript. Students who want to take other summer classes should talk to their advisor about it and must get permission from the Dean of Curriculum and Instruction to do so.

Section 3: Academic Policies

Sections: Requirements and Eligibility
A. Academic Calendar
B. Academic Requirements
C. Academic Eligibility to Continue at GSSM
D. Research \& Inquiry Program
E. Community Engagement
F. January Interim

Academic Integrity and Grading
G. Academic Integrity
H. Grade Appeal Policy
I. Grade Point Average Equivalencies
J. Class Rank

Academic Advising and Planning
K. Academic Advisors
L. Academic Concentrations
M. College Credit Hours for GSSM Courses
N. Independent Studies

Course and Assembly Policies
O. Attendance, Absences, and Makeup Policy
P. General Course Policies
Q. Meetings and Assemblies

Academic Requirements and Eligibility

A. Academic Calendar

To see the current Student Edition of the GSSM Academic Calendar, please go to: https://www.scgssm.org/residential/academic-calendar

B. Academic Requirements

GSSM awards both State of South Carolina and GSSM diplomas. To remain enrolled at GSSM and receive a GSSM diploma, students must fulfill the following requirements:

- be enrolled in a minimum of five (5) courses during each of the fall and spring semesters.
- earn a semester grade of C or better (70 or above) in each of the courses taken while at GSSM during the fall, interim, spring, and summer terms.
- earn a minimum of five (5) GSSM credits during their junior year and another five (5) GSSM credits during their senior year (Note: GSSM courses offered for credit during the summer or interim will count toward graduation requirements but will not count toward the minimum of five (5) GSSM credits that must be earned each year).
- complete satisfactorily the junior and senior seminars and the community engagement requirement

The table below outlines the minimum number of credits that must be completed for a GSSM diploma and a State of South Carolina diploma. Except for the Research \& Inquiry experience and January Interim requirements, course credits may be earned before enrolling at, or while attending GSSM.

Credits are defined as the following: 0.5 credits for a semester course, and 1.0 credits for a year-long or two-semester course. If one high school unit is awarded for a semesterlong dual enrolled course, GSSM reserves the right to review the curriculum to deem if the material covered meets the GSSM 1.0 credit (i.e. year-long or two-semester course) requirement listed in the table below.

Graduation Requirement	Credits
Science with a Lab (must include 1.0 credit biology, chemistry and physics at the honors level or higher)	3.0
Mathematics (must include 1.0 credit of calculus at the honors level or higher)	$4.0-5.0$
Computer Science	1.0
English/Language Arts (Must include ENG 111 and ENG 112, taken junior year. ENG 111 and ENG 112 together count as one credit. ENG 205 and ENG 201 together count as one credit)	4.0
Foreign Language (in the same language)	2.0
US History	1.0
US Government	0.5
Economics	0.5
Other Social Studies	1.0
Physical Education/ROTC	1.0
Research and Inquiry Experience	0.5
Fine Arts	1.0
GSSM January Interim Courses	1.0
Electives	$2.5-3.5$
Total	

Additional Graduation Requirements and Notes	
Research \& Inquiry Program Completion of a GSSM-approved, mentored research and inquiry program is required for all students. Most students complete this requirement through RES401 involving six weeks of mentored summer research \& completion of a portfolio. This requirement may also be completed through a course with the research and inquiry designation.	Required for all students to earn a grade of C or better (70 or above). Research and Inquiry Designated Courses:
Junior Seminar Series (one hour per week per seminar) Fall: Life and Leisure and Academic Transition Seminars Spring: College Planning Seminarl and a three-part seminar series	Required for all juniors to attend and pass.
Senior Seminar Series (one hour per week per seminar) Fall: College Planning Seminar II Fall: RES401 Mentored Summer Research \& Inquiry (until Annual Research Colloquium)	Required for all seniors to attend and pass. Required for students enrolled in RES401 to attend and earn a grade of C or better (70 or above).
Community Engagement	All students must participate based on outlined expectations

Note: In order to receive a South Carolina high school diploma, the State requires that each student take several state assessments.

While at GSSM students are required to take a college readiness exam (either the ACT or SAT) during the school days assigned by GSSM. Students must also take the work readiness assessment on the school day assigned. A student who takes AP US History while at GSSM is required to compete the End-of-Course Examination Program test for US History and the Constitution. A student who has not completed their biology requirement before attending GSSM must complete biology at GSSM and take the End-of-Course Examination Program test for Biology 1 and Applied Biology 2.

B. Academic Eligibility to Continue at GSSM

At the end of any semester, including interim or summer, a student who earns a semester grade of D or lower (69 or below) in any course will be required to return to their home high school to complete the remainder of their high school courses. If there are extenuating circumstances, a student may appeal to the Academic Review Committee. If a student chooses to appeal, the appeal must be sent via email to the

Vice President for Academics via email within five (5) days after the semester grades are communicated to the student and their family by email, phone call, or regular mail. Parents or guardians are welcome to appeal along with their student. The Academic Review Committee will respond to the appeal and render a decision within five (5) days of receiving the appeal.

C. Research \& Inquiry Program

One of the most distinctive learning experiences for GSSM students is student participation in a mentored research experience. Most students spend six weeks during the summer following their junior year conducting research under the mentorship of a professional researcher at a university, field station, government facility, or industry partner. All students, with the support of their GSSM faculty research advisor, complete a graded research portfolio to communicate their research experience and results. Students present their research presentations at the GSSM Annual Research Colloquium.

D. Community Engagement

The Governor's School for Science \& Mathematics views the Community Engagement service requirement as an appropriate and essential response on the part of GSSM students to the generosity of the state in providing an exceptional GSSM education. Service, whether within the context of the residence hall, faculty/staff assistance, or community, is emerging as one of the evidences of maturity sought in college admissions and has become an important requirement of many public and private secondary schools.

Satisfactory completion of this service is a GSSM graduation requirement. Students are required to complete 50 hours during their junior and senior years for a total of 100 hours during their time at GSSM. These hours can be earned through participation in a number of approved service activities. Students should be as faithful to community engagement as they are to their classes and other commitments. The Community Engagement program is administered through the Office of the Dean of Students. Questions regarding this requirement should be directed to this administrator or their designee.

E. January Interim

As part of the GSSM graduation requirements, students are required to enroll and successfully complete two interim courses, one during their junior and senior years. The courses vary in content and cost.

Please note the following related to Interim fees:

- If a student registers for an interim course that has a fee, the student and their family is responsible for payment in full to participate in the course.
- If a student does not pay the fee, they will be moved to an interim class that has availability and no fee.
- If a student withdraws or is dismissed from GSSM prior to or during interim, the student remains responsible for paying the course fee, and fees already paid will not be reimbursed. Refunds will only be given as the tour company's cancellation policy allows. Students who participate in interim courses based on travel follow payment plans set by the GSSM trip sponsor and/or the outside educational tour company organizing and coordinating the travel. Cancellation terms vary by company. Typically, the closer to the date of departure, the less money a student who cancels will be refunded. Refunds are only considered for limited reasons. Students may purchase (and are encouraged to) travel insurance to give them more, though still limited, cancellation options. GSSM faculty and staff will provide detailed and specific information about the finances associated with the Interim travel courses they are coordinating.
- Students who are no longer enrolled at GSSM may not participate in Interim courses or travel as a part of Interim courses.

Academic Integrity and Grading

F. Academic Integrity

Academic integrity is "a commitment, even in the face of adversity, to six fundamental values: honesty, trust, fairness, respect, responsibility, and courage" (International Center for Academic Integrity website). GSSM is a close-knit community built on these values. Because developing ethical leaders is a core component of a GSSM education, we expect students to uphold high ethical standards. A lack of academic integrity prevents students from learning and undermines our community, and therefore, is strictly prohibited. GSSM's academic integrity policy covers all school-related academic work, both in and out of class.

Remember:

1. Each GSSM syllabus gives specific guidance on academic integrity in that course. A syllabus is a contract for every class between the students and the teacher.
2. Students are responsible for understanding how to act with academic integrity in all their academic work. If they have questions or are unsure if they are violating academic integrity, they need to ask their teacher for clarity.
3. Students may not communicate with others or consult resources during inclass quizzes, tests, or exams unless specifically allowed by the instructor. Prohibited resources include textbooks, electronic devices, notes, or personal formula sheets unless specifically permitted by the teacher.
4. Plagiarism is prohibited. Plagiarism consists of taking someone else's work-words, images, and/or ideas-and passing them off as your own. Patch plagiarism, copying sections of a source while changing a few words, is also prohibited. When in doubt, cite your source. If you are confused about whether you are plagiarizing, ask your teacher.
5. Students may not use the work of GSSM alumni or other students.
6. Without permission, students may not obtain, consult, transmit, or share copies of quizzes, tests, projects, or prompts from current or previous years, physically or electronically. Students may not share or post class materials or assignments online.
7. Students may only collaborate on work when permitted by their teacher.
8. Teachers, working closely with their students, are the primary enforcers of academic integrity. When teachers discover that a student has violated academic integrity, they will discuss the incident with the student and then decide the consequences for the offense. In enforcing academic integrity, teachers will always work to be fair and consistent to all students and to help students learn from their mistakes. See the Discipline and Honor Code Violations section of this handbook for a full explanation of GSSM's process for dealing with violations of academic integrity.

Academic Integrity and Artificial Intelligence

Artificial intelligence is a rapidly evolving field that can transform our world, positively and negatively. Al can be a powerful tool, but it can also be a powerful temptation for students to submit work that isn't their own. As we all work to understand how AI is impacting teaching and learning, students must work closely with their individual teachers to understand and follow when and how it is permissible for them to use Al programs in doing their academic work.

If a student violates academic integrity using AI programs, they will be held accountable by their teachers. Just as with all academic integrity, different fields and different teachers will have different policies regarding AI and academic integrity. Ignorance, as always, is no excuse. If a student doesn't understand what they are allowed to do, they must ask their teacher.

Meeting the High Expectations of Being a Govie (adapted from the MIT website)

Plagiarism	
Do	Don't
Cite the words or ideas of others, if you use them. Cite your own work if you use it in another assignment.	Purchase papers or have someone write a paper for you. Copy words, data, or ideas without citing your source.
Undertake research honestly and credit others for their work.	you

Unauthorized Collaboration	
Do	Don't
Trust the value of your own intellect	Collaborate with another student or use internet resources beyond the extent specifically approved by the instructor.

Cheating	
Do	Don't
Demonstrate your own achievement.	Copy answers from another student; don't ask another student to do your Accept corrections from the instructor as part of the learning process. Do original work for each class.
Don't use electronic or other devices during exams. Alter graded exams and submit them for re-grading. Submit projects or papers that have been done for a previous class.	

Facilitating Academic Dishonesty	
Do	Don't
Showcase your own abilities.	Allow another student to copy your answers on assignments or exams. Don't take an exam or complete an assignment for another student. Don't share information about a test with other students until they have been returned to everyone. Alter graded exams and submit them for re-grading.

Very often, when students fall prey to challenges around academic integrity, it is because they feel desperate. In an effort to avoid the pitfalls of academic dishonesty, note the following:

Don't be afraid to ask for help!
We all need it from time to time. Asking for help is a sign of a mature, successful student.

Talk to your teacher

- Make an appointment to talk to your teacher and use their office hours. GSSM teachers are here because they are committed to helping students succeed.
- Ask your teacher for an extension. Teachers would much rather give you an extension or accommodate you in some other way than see you violate academic integrity.

Get academic support

- Issues with academic integrity often stem from struggles with time management, organization, and study skills. The Center for Academic Success can help with all three.
- For students struggling with content knowledge, our tutoring labs staffed with peer tutors are here to help.

Ask for advice

- Talk to your academic advisor, who can provide insight and guidance and help you work with your teachers.
- Ask your RLC's, your RA's, your classmates, and friends for help. We're all here for each other.

Manage your time

- Use what you learn in your Academic Transition Seminar to help you plan a schedule, balance your priorities, and save time. Good time management will help you stay productive, on track, and reduce stress.

Give your mind a break

- Students often put pressure on themselves to succeed. Even if you're used to getting A's, that might not happen at GSSM; and that's okay. When you are feeling overwhelmed, it is important to take a break from your academic focus.
- Play a sport or do something physical. Our athletics staff offers many options.
- Be creative. GSSM offers many options for being artistic.
- Do something fun with friends. Our student development staff works with students to offer all kinds of activities you can be a part of to take a break from your work.
- Talk with our counseling staff about being stressed and to find out other healthy ways to deal with stress.

Consequences for Academic Integrity Violations

1. When teachers discover that a student has violated academic integrity, they will discuss the incident with the student and determine the consequences for the offense. In enforcing academic integrity, teachers will always work to be fair and consistent to all students and to help students learn from their mistakes.
2. The teacher may choose to resolve the incident without a formal incident report if they think that is the best way for the student to learn from it. For these minor incidents, teachers can give students verbal or written warnings, reduce their grades, and/or require them to revise, rework, or retake written work or an exam. Teachers will keep records of all incidents involving academic integrity even if they do not write a formal incident report for them.
3. If the teacher considers the incident more serious, they will complete an academic integrity incident report and send it to the Dean of Academic Programs and the Dean of Students. At this point, the level of the charge is at the discretion of the instructor. The incident report will describe what happened, any supporting facts for the existence of a violation, and the penalty for the incident. The report will also outline how the teacher has worked with the student to understand the consequences of their actions and a plan for moving forward in the class.
4. Incident reports have three levels:
5. A level-one incident related to academic integrity is "failing to follow instructions" as outlined on the class syllabus and/or communicated by the teacher. As referenced in the Student Handbook, GSSM makes some allowances
for students as they acclimate to the school and, in this case, the rigor. Minor infractions should be minimal once students adjust. Penalties may include a written reprimand and/or warning.
6. A level-two incident is "cheating, plagiarism, unauthorized collaboration, and other acts of academic dishonesty." Penalties may include a zero on the assignment. Faculty may also give the student an opportunity to re-submit the assignment.
7. A level-three incident occurs when a student commits a second level-two academic integrity offense or when a violation is judged to be egregious. Levelthree incidents are referred to the Judicial Council for review. Penalties may extend to expulsion from the program. See the Judicial Council section of this handbook for an explanation on Judicial Council procedures.
8. Level-two or level-three incidents will also be sent to the student's parents in keeping with the GSSM Discipline and Honor Code.
9. The Dean of Curriculum and Instruction will review the incident report and student's permanent record to determine if a greater penalty is merited based on previous offenses. Completed academic dishonesty incident reports and subsequent actions will be placed in a student's permanent record. The dean will also meet with the student to help him or her understand the consequences of their actions and to work on moving forward productively.

7. Appeals:

1. Students may appeal to the Dean of Curriculum and Instruction if they believe that they did not violate academic integrity. The dean will consult with the faculty member, the chair of the department, and the Vice President for Academics before deciding the appeal.
2. Students may appeal grade penalties by using the GSSM grade appeal process found in this handbook.

Students may appeal Judicial Council decisions using the appeal process outlined in the Discipline and Honor Code Violations section of The GSSM Student Handbook.

G. Grade Appeal Policy

- Purpose

Faculty members have the right and responsibility to assign grades based on their selected methods.

These methods must follow professional and disciplinary standards, must be clearly communicated to everyone in the class, and must be equally applied to all students. Faculty members should maintain careful records of all grades and policies and ensure that the syllabus is thorough and clear.

GSSM students have the right to appeal any grade. They should be aware, however, that clear evidence is needed to successfully appeal a grade. Belief that an assignment or text was too difficult is not grounds for an appeal. A student must have clear evidence that a faculty member erred or violated a specific policy in assigning the grade, or that they treated the student in a prejudicial or unfair manner.

- Talk to Your Teacher First

GSSM students are encouraged to work directly with their teachers to resolve disputes or misunderstandings. Many grade disputes can be resolved without students filing a formal appeal. If a student feels that they have received a grade in error or unfairly, the student must contact their teacher by email within five (5) business days of the grade being posted or distributed. The student should include the following in their email: evidence to support the appeal and the outcome the student seeks. The student and faculty member should meet to discuss the issue within five (5) business days of the student contacting the faculty member. If the matter is resolved, the faculty member will write an email to the student summarizing the terms of their agreement.

- Formal Resolution

If an initial process between a student and faculty member does not resolve the dispute, a student may proceed to a formal appeal.

1. The student should first send a written appeal to the faculty member within five (5) business days of the first meeting with the faculty member that states again their reasons and evidence for the appeal to include a statement of why the matter was not resolved during the initial process. The faculty member will respond in writing within five (5) business days to the student's written appeal.
2. If the student is not satisfied with this response, the student may appeal, within five (5) business days, to the department chair of the faculty member. If the faculty member is the department chair, the student may appeal to the Dean of Curriculum and Assessment.
3. The student must also present a written appeal to the department chair. The department chair will read the faculty member's written response. The department chair, the student, and the faculty member will then meet within five (5) business days after the student's written appeal has been received by the department chair. Students may have an additional faculty or staff member of their choosing at this meeting if they wish. The department chair will respond in writing to the student's written appeal within five (5) business days after the meeting. This response will go to both the student and the faculty member.
4. The department chair is the final arbiter of a grade appeal based on a question of academic content. If the dispute remains unresolved, however, a student may ask the Vice President for Academics for an academic hearing as a final appeal within five (5) business days of receiving the department chair's response. This final appeal must state in writing what procedure the faculty member has violated and/or how the student has been treated unfairly.
5. Within five (5) business days of receiving this written request for an academic hearing, the Vice President for Academics will create an academic response team composed of three faculty members. The Vice President for Academics will appoint one faculty member from the teaching faculty at large and one faculty member each from lists of three faculty submitted by the student and the faculty member who is involved in the appeal. None of these faculty members shall be members of the academic department of the faculty member whose grade is being disputed.
6. The academic response team will review written statements and information supplied by the student, faculty member, and department chair or dean. Both the student and the faculty member have the right to appear in person before the academic response team. The team may investigate further as is appropriate and may seek assistance or information from others. All discussions and submitted written documents will be confidential.
7. After this review, the academic response team will render a decision regarding the appeal within five (5) business days. This decision is the final step in the grade appeal. The academic response team will inform the student, the faculty member, and the department chair or dean of their decision in writing. Their decision will include the relevant findings of fact, conclusions, and reasons for the decision.

Note: Records of grade appeals will be kept by the department chair of the faculty member whose grade was appealed.

Other Academic Appeals

Students may also have disputes with faculty members that do not directly involve grades. Appeals related to academics but unrelated to grade appeals will follow the same general procedures as outlined above for grade appeals. The appeal must be made in writing to the instructor, with a copy to the department chair or the Dean of Curriculum and Assessment if the faculty member is a department chair. If the appeal is not resolved by working with the faculty member, the student may appeal to the department chair, and finally the Vice President for Academics.

H. Grade Point Average Equivalencies

South Carolina Uniform Grading Scale Conversions				
Numerical Average	Letter Grade	College Prep Weighting	Honors Weighting	AP/IB/Dual Credit Weighting
100	A	5.000	5.500	6.000
99	A	4.900	5.400	5.900
98	A	4.800	5.300	5.800
97	A	4.700	5.200	5.700
96	A	4.600	5.100	5.600
95	A	4.500	5.000	5.500
94	A	4.400	4.900	5.400
93	A	4.300	4.800	5.300
92	A	4.200	4.700	5.200
91	A	4.100	4.600	5.100
90	A	4.000	4.500	5.000
89	B	3.900	4.400	4.900
88	B	3.800	4.300	4.800
87	B	3.700	4.200	4.700
86	B	3.600	4.100	4.600
85	B	3.500	4.000	4.500
84	B	3.400	3.900	4.400
83	B	3.300	3.800	4.300
82	B	3.200	3.700	4.200
81	B	3.100	3.600	4.100
80	B	3.000	3.500	4.000
79	C	2.900	3.400	3.900
78	C	2.800	3.300	3.800
77	C	2.700	3.200	3.700
76	C	2.600	3.100	3.600
75	C	2.500	3.000	3.500
74	C	2.400	2.900	3.400
73	C	2.300	2.800	3.300
72	C	2.200	2.700	3.200
71	C	2.100	2.600	3.100
70	C	2.000	2.500	3.000

Continued on next page...

69	D	1.900	2.400	2.900
68	D	1.800	2.300	2.800
67	D	1.700	2.200	2.700
66	D	1.600	2.100	2.600
65	D	1.500	2.000	2.500
64	D	1.400	1.900	2.400
63	D	1.300	1.800	2.300
62	D	1.200	1.700	2.200
61	D	1.100	1.600	2.100
60	D	1.000	1.500	2.000
59	F	0.900	1.400	1.900
58	F	0.800	1.300	1.800
57	F	0.700	1.200	1.700
56	F	0.600	1.100	1.600
55	F	0.500	1.000	1.500
54	F	0.400	0.900	1.400
53	F	0.300	0.800	1.300
52	F	0.200	0.700	1.200
51	F	0.100	0.600	1.100

I. Class Rank

GSSM does not rank our students. Because the student body represents a cross section of the brightest and highest-ranked students from the state, ranking is neither fair nor appropriate.

Academic Advising and Planning

J. Academic Advisors

GSSM students start working with the teacher who serves as their academic advisor shortly after they are admitted. Students keep the same advisor for their two years at GSSM. Academic advisors guide students through the course selection process, mentor and support the wholistic development of the student, and serve as a resource referring students to other professionals when appropriate.

Academic advisors work with their advisees, teachers, the Dean of Curriculum and Instruction, the Director of the Center for Academic Success, the Vice President for Academics, and the Vice President for Student Development to help solve specific academic problems that arise during the school year. Advisors must also communicate with the teachers of their advisees, because they can usually provide more information and insight about them; in return, advisors
can often help other teachers by sharing appropriate, nonconfidential information about their advisees. Advisors may also contact coaches, residence life staff, and extracurricular advisors to get a broader insight into the advisee's attitude, behavior, and degree of success or failure and extent of cooperation.

K. College Credit Hours for GSSM Courses

> Credit Hours at Coker University and Francis Marion University for Coursework taken at the South Carolina Governor's School for Science and Mathematics

GSSM has a dual-enrollment agreement with Coker University and Francis Marion University through which our students receive Coker University or Francis Marion University credit for certain courses.

- Dual-enrollment courses are those for which GSSM students simultaneously earn highschool and college credit. College credit for GSSM's dual-enrollment courses is granted by Coker University and Francis Marion University (FMU). Both are accredited by the Southern Association of Colleges and Schools Commission on Colleges (SACSCOC or SACS), which is the recognized regional accrediting body in the southeast.
- GSSM faculty teach our dual-enrollment courses in the same way they teach all our residential or virtual classes. GSSM faculty grade all work in the courses and assign students their grades. The courses are approved by Coker and FMU as meeting the same learning objectives as the Coker or FMU courses for which they receive credit.
- Dual-enrolled courses taken while enrolled at GSSM receive the same GPA credit as AP or IB courses, higher than courses designated as "honors." One 3-hour dual-enrolled course (taken in one semester) earns one unit of high school graduation credit.
- As with credits from most SACS-accredited colleges, credits from Coker and FMU are transferrable to other similarly accredited institutions. In addition, most schools within South Carolina have agreements in place that allow for the transferring of college credits. See the table below for how Coker or FMU courses taken at GSSM will transfer to Clemson and USC. GSSM students who receive a "C" or higher ($\geq \mathbf{7 0 / 1 0 0}$) in their dual-enrollment courses are usually able to transfer their Coker or FMU credits to other colleges and universities in South Carolina (and, in many cases, to other institutions). Letter grades below a "C" ($\mathbf{~ 7 0 / 1 0 0) ~ a r e ~ a l m o s t ~ a l w a y s ~ i n e l i g i b l e ~ f o r ~ c r e d i t ~ t r a n s f e r , ~ t h o u g h ~ t h e y ~ w i l l ~ m o s t ~}$ likely remain on the student's transcript when it is sent to the institution of matriculation. Colleges and universities set their own transfer policies, so for colleges outside S.C., students should confer with the college about its specific transfer credit policies.
- Residential students work with their advisors to decide if a dual-enrolled course is best for them. The registrar places them in the class just like any other GSSM class. For FMU courses, students must also fill out a short application from FMU to register them as an FMU student.
- Students follow the important dates below for GSSM dual-enrolled courses.
- Coker and FMU will issue a transcript showing the college credit earned at Coker or FMU for each dual-enrollment class a few weeks after final grades are submitted. Official transcripts may be requested for a small fee.
- Follow the process here (https://www.coker.edu/offices-services/academic-records/) for Coker University transcripts. Note: Scroll down to How can I order a copy of my transcript? Follow the process here (https://www.fmarion.edu/registrar/transcript/) for Francis Marion transcripts. Note: FMU will also send students an official transcript each year.
- Students should also be aware that grades earned in dual-enrolled courses are used in calculating eligibility for the LIFE Scholarship. Students should work with their advisors to try to avoid having GSSM dual-enrollment courses hurt their eligibility for this scholarship if they will attend college in South Carolina. See https://www.che.sc.gov/CHE_Docs/studentservices/life/FAQ-LIFE-3_2021.pdf for FAQ about the LIFE Scholarship.
- If you have questions about dual-enrolled courses, contact the Dean of Curriculum and Instruction, Matt Martin (mailto:mmartin@governors.school).

Dual Enrollment Important Dates for Coker University

August 27	Last day to add/drop a fall course (not on transcript)
October 18	Last day to withdraw from a fall course with a W. After this date students will earn a WP or WF on transcript.
January 14	Last day to add/drop a spring course
March 21	Last day to withdraw from a fall course with a W. After this date students will earn a WP or WF on transcript.

Dual Enrollment Important Dates for FMU

By the start of fall semester GSSM students taking FMU dual-enrollment courses must enroll in FMU:

- Go to https://fmlink.fmarion.edu/default.asp.
- Click "Create New Account" and create an account following the prompts.
- Once your account is created, you'll get an email at the address you used to confirm the account.
- Click to confirm the account and then log in using the email and password you selected at the link above.
- Complete the dual enrollment application. Do not pay to submit. We will apply a fee waiver as soon as the application is submitted.
- You also need send FMU proof of US citizenship: a copy of the driver's license (or permit), birth certificate, or passport. These should be emailed to BFunk@fmarion.edu

TBA Last day of drop/add a fall course (not on transcript)
TBA Last day to withdraw from a fall course with a W. After this date students will earn a WP or WF on transcript.

TBA Last day to drop/add an FMU dual-enrolled course (not on transcript)
TBA Last day to withdraw from a spring course with a W. After this date students will earn a WP or WF on transcript.

Dual-Enrollment Courses

For a full description of Clemson transfer credit, go to:
https://transferringcredits.app.clemson.edu/transferequivalency.php.
For a full description of USC transfer credit, go to:
https://banner.onecarolina.sc.edu/BannerExtensibility/customPage/page/z_spg_codestransferequiv?mepCode=COL

GSSM Course	Coker University Course	Credit Hours	Clemson Transfer Credit	USC Transfer Credit
CHI 101 Introduction to Chinese I	CHI 101	3	CHIN 1010	CHIN 121
CHI 102 Introduction to Chinese II	CHI 102	3	CHIN 1020	CHIN 122
CHI 201 Introduction to Chinese III	CHI 201	3	CHIN 2010	CHIN 002T
CHI 202 Introduction to Chinese IV	CHI 202	3	Pending Approval	Pending Approval
CSC 110 Computer Science I: Python for Scientist	CS 110	4	Transfer elective	ENCP001T
CSC 311 Computer Science II: C++ Application	CS 111	4	Transfer elective	ENCP001T
ENG 111 English Composition and Rhetoric I	ENG 111	3	ENGL 1999	ENGL 101
ENG 112 English Composition and Rhetoric II	ENG 112	3	ENGL 1030	ENGL 102
ENG 201 World Literature I	ENG 207	3	TBA	TBA
ENG 202 World Literature II	ENG 209	3	TBA	TBA
ENG 215D Writing in Stem	ENG 215D	3	STS 1200	ENGL 002T
ENGIN 102 Engineering Disciplines and Skills	EGR 102	3	$\begin{aligned} & \hline \text { ENGR 1050, } \\ & 1060,1099 \end{aligned}$	ENCP 101
ENGIN 141 Computer Applications 1 with MATLAB	EGR 141	3	ENGR 1410	$\begin{aligned} & \text { ENCP } \\ & 0001 T \end{aligned}$

ENGIN 208 Engineering Design and Modeling	EGR 115	3	ENGR 2080, 2999	ENCP 102
MAT 231 Calculus 1	MAT 231	4	MATH 1060	MATH 141
MAT 232 Calculus 2	MAT 232	4	MATH 1080	MATH 142

$\left.\begin{array}{|l|c|c|c|c|}\hline \text { GSSM Course } & \begin{array}{c}\text { Francis Marion } \\ \text { University Course }\end{array} & \begin{array}{c}\text { Credit Hours }\end{array} & \begin{array}{c}\text { Clemson } \\ \text { Transfer } \\ \text { Credit }\end{array} & \begin{array}{c}\text { USC } \\ \text { Transfer } \\ \text { Credit }\end{array} \\ \hline \text { CHE 101 DE Chemistry I } & \text { CHEM 111 \& 111L } & 4 & \begin{array}{c}\text { CH 1010 \& } \\ 1011\end{array} & \begin{array}{c}\text { CHE 111 \& } \\ 111 \mathrm{~L}\end{array} \\ \hline \text { CHE 102 DE Chemistry II } & \text { CHE 112 \& 112L } & 4 & \begin{array}{c}\text { CH 1020 \& } \\ 1021\end{array} & \begin{array}{c}\text { CHE 112 \& } \\ 112 \mathrm{~L}\end{array} \\ \hline \begin{array}{l}\text { ECON 210 Principles of Economics: Macroeconomics } \\ \text { Concepts }\end{array} & \text { ECON 203 } & 3 & \text { ECON 2120 } & \text { ECON 222 } \\ \hline \begin{array}{l}\text { ECON 211 Principles of Economics: Microeconomics } \\ \text { Concepts }\end{array} & \text { ECON 204 } & 3 & \text { ECON 2110 } & \text { ECON 221 } \\ \hline \text { PHY 161 General Physics I } & \text { PHYS 215 } & 4 & \text { PHYS 2070 \& } & \text { PHYS 201 \& } \\ 2090\end{array}\right]$

Note for students in the GSSM class of 2023: If you have questions about the phasing out of our course challenge agreements with Clemson and USC, contact Dr. Matt Martin (mmartin@governors.school)

L. Independent Studies

Independent study courses are student-initiated and allow students to explore areas of interest beyond what is offered in the catalog. These courses are aimed at enhancing the quality of our academic program by allowing students to develop customized courses in areas of instructor expertise beyond the current course catalog.
Students wishing to enroll in an independent study course must wish to extend knowledge in a discipline where all relevant existing courses have been completed with a grade of 90 or above or with the permission of instructor and Curriculum Committee approval. The Curriculum Committee reserves the right to determine if all relevant courses have been taken in an area of study in order to warrant an independent study course. In some cases, it will be advised that a student take an existing course instead of an independent study course. Independent study course content (as evidenced by course description, syllabus and any supporting material) must be approved by the Curriculum Committee. Proposals should be completed and submitted to the Department Chair no later than December 1st for a spring course and May 1st for a fall course.

Please note:

- Independent study courses are student-initiated and are considered to be a course contract between the student and faculty member to complete the course of study.
- Faculty members are under no obligation to teach an Independent Study.
- Independent study course proposals will typically be considered for 0.5 Carnegie unit (with a time commitment equivalent to a regular semester-long course).
- Independent study courses are overload courses and cannot count towards the 5 course/semester minimum without approval from the Vice President for Academics.
- No student may take more than two independent study courses per academic semester.
- No faculty member may teach more than two independent study courses per academic semester.
- If a student is going to drop a class, the independent study class should most likely be the course dropped.

Course and Assembly Policies

M. Attendance, Absences, and Makeup Policy

To receive the full benefit of the academic experience at GSSM, students must attend all of their classes and labs at GSSM unless they have excused absences. Online Excused Absence Forms must be submitted three days prior to the planned absence.

1. Students who are absent from class or other mandatory activities must make up all missed work. For excused absences, the following makeup work policy applies:
a. Students should email their instructor reminding them or informing them in case of an unexpected absence, they will be absent.
b. Before returning to class, students should check their online excused absence submission for instructor comments, directions, assignments, etc. Students should also find out what was covered and what was assigned.
c. Work assigned prior to the excused absence and due the day of an excused absence must be turned in within two (2) class meetings from the day the student returns to class. The first of those two days is the day the student actually returns to class.
d. Work assigned during a class period when a student is absent must be completed within five (5) calendar school days (Monday - Friday) from the day the student returns to class. The first of those five days is the day the student actually returns to class.
e. If a student is excused for three (3) or more consecutive classes in a course, the student must meet with the instructor to determine an appropriate time frame to
complete work due during the classes missed as well as new assignments. This meeting should occur before or on the day the student returns to class. The appropriate Department Chair and/or the student's academic advisor can assist in coming up with an appropriate plan if necessary.
f. Long-standing assignments should be submitted prior to the excused absence. When this is not feasible, work should be submitted on the first -class meeting when the student returns to class. A long-standing assignment is defined as one that is assigned two weeks or more in advance of the date of the student's first day of an excused absence.
g. The instructor has the discretion, but not the obligation, to work with the student to extend any of these make-up policies. It is in the student's best interest to communicate with the instructor as quickly as possible during times of planned excused absences or times of illness or other unexpected absences.
2. There are four categories of absences:
a. Category I: This category includes absences for illness, doctor appointments, events sponsored by GSSM, scholarship interviews, funerals, and other situations that GSSM staff see as similar. Although we have no official limit for this type of absence, students should avoid missing classes whenever possible.
b. Category II: Students may take up to five academic days for college visits during their two years at GSSM. Please use long weekends, holidays, and summer breaks whenever possible for college visits.
c. Category III: Students may use up to three days each year for family and personal matters, including court dates and other family activities. Save these days for unanticipated events whenever possible.
d. Category IV: Un-excused absences include but are not limited to over-sleeping, skipping, extra-curricular activities, club meetings, and absences related to part-time/full-time jobs (GSSM Students are not permitted to hold outside jobs while attending GSSM). If an absence is denied by an instructor and the student still chooses to miss that class, the absence will be considered unexcused. Unexcused absences should be rare at GSSM.

3. Online Excused Absence Forms

a. Anticipated Excused Absences
i. Students must complete the online excused absence form through GSSM's student portal at least 3 full class days prior to the scheduled absence.
ii. Instructors will approve/deny requests and may post comments/instructions with their approval/denial. Excusing non-medical absences is at the discretion of the instructor and failing to submit the absence form on time could result in an absence request being denied.
iii. Instructor comments may include, but are not limited to, reasons why an absence is not approved, instructions/assignments for the missed class, instructions to visit office hours, or simple well wishes.
iv. Weekend leave submissions, required for any overnight absence, must also be submitted and reviewed through REACH and signed off on as part of the excused absence.
v. The Vice President for Academics or the Vice President for Student Development has final approval for excused absences.
vi. Once an absence is approved, attendance will be recorded.
vii. Students can see the status of any request for an excused absence by looking up the request forms on the GSSM Student Portal.
viii. Note: Students should check their spam or junk mail folders to look for GSSMgenerated emails about excuse absent requests.
ix. Students must turn in medical notes to the nursing staff on the day of they return to GSSM.
b. Unanticipated Excused Absences
i. If students are sick, they must see the school nurse, a Residence Life Coordinator, or the Dean of Students before missing a class, or their absence will be unexcused.

- If a student is sick, they must go to the school nurse. If the nurse is not in the office, the student should call the Residence Life Coordinator on duty.
- If a student is in class and becomes ill, the student should ask permission from the instructor to see the nurse.
- If the nurse determines the student needs to see a doctor, they, in consultation with the student's parent/guardian, will schedule an appointment for the student.
ii. For bereavement and family emergencies, students should complete the online excused absence form if there is time. If there is not time, the student's parent/guardian should send an email to the Program Coordinator for Academic Affairs and Student Development.
c. Any questions about absences or the excused absence process should be sent to the Program Coordinator for Academic Affairs and Student Development.

4. This same process applies for field trips, academic competitions, athletic events, missing academic Saturdays, etc. For any Friday and/or Monday absences that will include a weekend not designated as a long weekend, a weekend leave request must be submitted through REACH in addition to the Online Excused Absence Form. (See Weekend Leave Request section of this handbook.).
5. Excused Absence Requests not submitted on time may not be processed, and the absence(s) may be recorded as unexcused regardless of instructor and parental approvals. Advanced notice will be waived for emergencies only.
6. Teachers may assign academic penalties for unexcused absences based on the missed opportunity for learning in the particular course, lab, or presentation (e.g. Colloquium) as outlined in the syllabus for the course or lab. Teachers may impose penalties not to exceed the following:
a. First absence: The teacher may warn and counsel the student about missing class.
b. Second and each subsequent occurrence: Reduction of up to 3 points on the UGS for the semester may be imposed by the teacher.
c. Missed quizzes, tests, late work or required presentation: A reduction of up to 3 points on the Uniform Grading Scale (UGS) for the semester grade. Daily work (e.g. pop quizzes) will be made up at the discretion of the teacher as described in the course syllabus. Make-up of major tests and labs is mandatory. Note that participation in Colloquium is required and attending it should be prioritized. Providing make up opportunities for Colloquium may be difficult; and the academic penalties for not participating significant.
d. The combination of penalties stated above for missing a class and for graded work during the same class may not exceed 4 points on the UGS.
e. Attendance policies for junior seminars are outlined in the syllabus for each seminar.
7. Absences in excess of the limit in each category will be recorded as unexcused. For a few academic days (e.g., Colloquium) Category II and III absences are not permitted. Such days will be announced well in advance to parents and students.
a. Students will not earn credit for a course in which they have more than 10 absences (excused and/or unexcused) for scheduled meetings. In extraordinary circumstances, parents/guardians may the Vice President for Academics for a waiver from this policy.
b. Students are expected to be on time for all scheduled classes. Tardies adding up to 20 minutes during the semester may be counted as an unexcused absence.
c. A deficiency form will be mailed to parents if a student has three unexcused absences in a course or two unexcused absences in a science lab during a semester.

N. General Course Policies

Add/Drop

The last day for adding a course is seven school days after classes have begun. The last day to drop a course without it appearing on the transcript is four weeks. Courses may be dropped until midterm with a notation of withdraw passing (WP) or withdraw failing (WF) on the transcript. Dates differ for dual-enrolled courses (See College Credit Hours for GSSM Courses below). All dates are listed on the GSSM Academic Calendar.

Auditing

Students can audit a class, with prior approval of the instructor and consent of the Vice President for Academics, without receiving a grade or credit, provided there is space available. Specific requirements about completing homework, projects, tests, etc. are at the discretion of the teacher.

Tests and Assignments

Tests requiring the entire class period should be announced to the class in advance of the test date. No student is required to take more than three full-period tests on any day. Short (less than 20 minutes) quizzes may be given without prior notice. Major paper assignments and due dates should also be announced in class well in advance of the due date.

Faculty members should assign only a minimum amount of homework over a long weekend or after a major school event (all-day trip, convocation, prom, etc.). If at all possible, these assignments should be made well in advance of the weekend or event. No assignments should be made over vacation breaks, such as Thanksgiving, Christmas, winter, or spring break.

No quizzes or tests should be given on the first class after a long weekend or vacation break.

Course Instructors and Course Times

Students cannot select instructors or course times. It is important to learn how to learn in all situations and from a variety of teaching styles. Learning from our diverse and talented instructors will prepare you for learning in the college setting and beyond. In order to provide the best educational experience, we try to have a similar number of students in each class). Since a number of our courses are taught in one semester and since we allow students to add and drop courses at the beginning of semesters, we sometimes need to
rebalance classes for instructors at the beginning of each semester and sometimes after a few weeks into a semester.

Course Placement

Every effort is made to place juniors in courses that are at the correct level based on their previous academic experience. Occasionally, a student may be misplaced. In such cases, the Vice President for Academics, in consultation with the subject teacher and academic advisor, may shift a student to a different level course. The deadlines and recording rules noted above are waived in these unusual circumstances.

Grade Reporting

Grades are given to students and sent home to parents after the mid-term of each semester and after semester exams. Instructors are encouraged to provide feedback, especially for juniors, throughout the year. At any time, students can ask their instructors about their grades; however, we encourage students to take responsibility for knowing what their grades are in courses by recording them and referring to the syllabi for their courses.

Instructor Absence

In case of an unplanned absence by an instructor, a note by a faculty or staff member will be posted on the classroom door and/or through email. If there is no note and an instructor has not arrived for class within 5 minutes of the start time, one student should verify that the instructor is not in their office and then inform the Vice President for Academics or another member of the staff. All students will remain in the classroom until a staff member has given them further instructions or dismissed them.

Meetings with Instructors

If a teacher requests a meeting with a student, the student is expected to attend the meeting. A missed meeting will result in a level-1 offense (2 m . Missing an appointment or required meeting).

Semester Exams

Exams are given in most courses in December and May. A few courses do not lend themselves to final exams, and a project or final paper may be assigned in lieu of an exam. For seniors with A's in a course, a teacher may elect to exempt them from the May exam only.

Textbooks

GSSM provides textbooks for all students. Student are responsible for returning the books in good condition at the end of the course. Damaged or lost books will be charged to the student. No grades or transcripts will be available to a student until all outstanding financial
obligations are met. Books borrowed from the Coker University library are similarly the responsibility of the student.

Transfer Credit

GSSM gives credit for all courses on the home school transcript. After entering GSSM, students may not take summer or online courses in lieu of GSSM requirements or for credit on the GSSM transcript without permission from the Vice President for Academics.

O. Meetings and Assemblies

Unexcused absences from required meetings and assemblies will be considered an infraction and will be sanctioned accordingly. Decorum for attendance at meetings and assemblies includes the following:

1. Students may not wear hats/baseball caps.
2. Students must remain awake and alert for the entire program.
3. Students must exhibit courteous and appropriate behavior that includes, but is not limited to, no talking, eating, drinking, whispering, passing notes, or feet up on chairs or railings, etc.
4. Students may not wear or use headphones and should not bring electronic devices to an assembly meeting.
5. Students are expected to attend all mandatory assemblies and to be on time.
6. Any faculty and/or staff members may cite a student for inappropriate behavior during an assembly.
